OPERATION CASTLE
 Projects 1.1a, 1.1b, and 1.1d Blast Pressures and Shock Phenomena Measurements by Photography

March-May 1954

Headquarters Field Command
Armed Forces Special Weapons Project
Sandia Base, Albuquerque, New Mexico

September 1955

notice

This is an extract of WT-902, Operation CASTLE, which remains classified SECRET/RESTRICTED DATA as of this date.

Extract version prepared for:
Director
DEFENSE NUCLEAR AGENCY
Washington, D.C. 20305
1 April 1981
seCuhitr classification of this pact (phon Dato Eniond)

Approved for public release; unlimited distribution.
17. DISTRIBUTIOH STATEMENT fol the Ebitact entered in Black 20. If different from R apart)
18. SUPPLERENTARK NOTES

This report has had the classified information removed and has been republished in unclassified form for public release. This work was performed by Kaman Tempo under contract DNA001-79-C-0455 with the close cooperation of the Classification Management Division of the Defense Nuclear Agency.
19. KEY EOROS (Continue on reverse side if necexaty and ldently by block number

Operation CASTLE
Blast Pressures
Shock Phenomena Measurements
Instrumentation
20. AESTRACT (Continue on reveres ide (fnecreatry and Identify by block nuintar)

1

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

This report has had classified material removed in order to make the information available on an unclassified, open publication basis, to any interested parties. This effort to declassify this report has been accomplished specifically to support the Department of Defense Nuclear Test Personnel Review (NTPR) Program. The objective is to facilitate studies of the low levels of radiation received by some individuals during the atinospheric nuclear test program by making as much information as possible available to all interested parties.

The material which has been deleted is all currently classified as Restricted Data or Formerly Restricted Data under the provision of the Atomic Energy Act of 1954, (as amended) or is National Security Information.

This report has been reproduced directly from available copies of the original material. The locations from which material has been deleted is generally obvious by the spacings and "holes" in the text. Thus the context of the material deleted is identified to assist the reader in the determination of whether the deleted information is germane to his study.

It is the belief of the individuals who have participated in preparing this report by deleting the classified material and of the Defense Nuclear Agency that the report accurately portrays the contents of the original and that the deleted material is of little or no significance to studies into the anounts or types of radiation received by any individuals during the atmospheric nuclear test program.

GENERAL SHOT INFORMATION

4

	Shot 1	Shot 2	Shot 3	Shot 4	Shot 5	Shot 6
date	1 Morch	27 March	7 April	26 April	5 May	14 May
CODE NAME (Unclassified)	Bravo	Romeo	Koon	Union	Yonkee	Nector
TIME*	06:40	06:25	06:15	06:05	06:05	06: 15
LOCATION	Bikini, West of Chorlie (Namu) on Reef	Bikini, Shot Crater	Bikini, Tore (Eninman)	Bikini, on Barg of Arcs with R Dog (Yurochi) from Fox (Aom	Intersection of 6900^{\prime} from 3 Statute Miles).	Eniwetok, IVY Mike Crater, Flora (Elugeiob)
TYPE	Land	Barge	Land	Barge	Barge	Barge
holmes a narver coordinates	$\begin{aligned} & \text { N } 170,617.17 \\ & \text { E } 76,163.98 \end{aligned}$	$\begin{aligned} & N 170,635.05 \\ & \text { E } 75,950.46 \end{aligned}$	$\begin{aligned} & \text { N } 100,154.50 \\ & \text { E } 109,799.00 \end{aligned}$	$\begin{aligned} & N 161,698.83 \\ & E \quad 116,800.27 \end{aligned}$	$\begin{aligned} & \text { N } 161,42443 \\ & \text { E } 116,688,15 \end{aligned}$	$\begin{aligned} & \text { N } 147,750.00 \\ & \text { E } 67,790.00 \end{aligned}$

* approximate

Abstract

The objective of Project l. la was to determine by smoke rocket photography, the peak shock overpressure as a function of distance.

The objective of Project l.lb was to obtain, by direct shock photography, information on precursors and surface effects that might be formed as well as to obtain peak shock overpressure data on those shots not instrumented by Project l.la.

The objective of Project l.ld was to extend by aerial photography the range of measurements to regions not observable in Projects l.la and 1.1 b .

The results and conclusions may be summarized as follows:

\section*{GENERAL}

The photographic methods of Projects l.la and l.lb proved to be successful, particularly on Shots 1, 2, 4, and 6.

Project l.ld was not successful. The films obtained were not usable for one or more of the following reasons:
a. Cloud obscuration.
b. Overexposed films.
c. Large timing and spatial uncertainties.

THE FIREBALL REGION

On all observed shots the growth of the fireball was greater vertically than that along the surface; and on all barge shots, a nipple-like protrusion appeared at the top of the fireball. This protrusion grew until about the time of shock breakaway when it ruptured and appeared to release the detonation products of the fireball. (On Shot i the top of the fireball was obscured by clouds and it is not known whether or not the effect existed.)

With the exception of Shot 5, on which the photography was considered to be unreliable, no asymmetry was detected in the fireball growth along the surface.

THE SHOCK REGION

With the exception of the Shot 2 land-surface data, which were known to be high, the pressure-distance data appeared to be trustworthy; the maximum uncertainty for Shots 1,2 (water surface data), and 6 was 10%; the maximum uncertainty for Shot 4 was 7%. All pressures obtained were in the 500 psi to 10 psi region.

The use of the cube law for scaling pressure-distance curves for weapons of large yields (1.7 MT to 15 MT$)$ in this region over a water surface was satisfactory. The reduced data were self-consistent to within 5% which was less than the experimental uncertainty (10%) and compared favorably with the free-air composite scaled to 2 KT ($\sim 10 \%$ to 15% low).

These CASTLE data, the IVY Mike data, and the JANGLE Surface data apeared compatible in common pressure regions.

No vertical shock data were obtained, except on Shot 2 where pressure-distance data in the 10,000 to $15,000 \mathrm{ft}$ region were obtained. The uncertainties of these data ranged from 20% at 10,000 to 15% at $15,000 \mathrm{ft}$, which were too large to confirm NOL predicted pressures which had values within the spread of the experimental data.

On Shot 2, two wave fronts were observed at altitudes of $\sim 265,000 \mathrm{ft}$ to $\sim 335,000 \mathrm{ft}$. The first was apparently the shock; the second was presumed to have been an acoustic wave.

SURFACE EFFECTS

No precursors were observed in any of the films, but a dense water cloud, believed to be the result of the interaction of the shock and the rough water surface, was generated immediately behind the shock of Shot 4. On the other shots, particularly Shot 2, in which the surface could not be viewed directly, there were strong indications of this effect, which is believed to have persisted to at least the 10 psi region.

This seems to confirm the existence of water droplets which Project 1.3 postulated as one of the causes for the anomalies observed in the wave forms and in the dynamic pressures obtained for Shots 4 and 5 .

FOREWORD

This report is one of the reports presenting the results of the $3^{\prime} 4$ projects participating in the Military Effects Tests Program of Operation CASTLE, which included six test detonations. For readers interested in other pertinent test information, reference is made to W'-934, Summary Report of the Commander, Task Unit 13, Programs 1-9, Military Effects Program. This summary report includes the following information of possible general interest.
a. An over-all description of each detonation, including yield, height of burst, ground zero location, time of detonation, armient atmospheric conditions at detonation, etc., for the six shots.
b. Discussion of all project results.
c. A summary of each project, including objectives and results.
d. A complete listing of all reports covering the Military Effects Tests Program.

ACKNOWLEDGEMENTS

The authors are deeply indebted to Edwin G. Nacke of the U. S. Naval Ordnance Laboratory, A/3c Jack A. Martin, USAF, and A/3c William R. Rogers; USAF, all of whom contributed immeasurably to the success of the project. Their attention to detail in the preparatory and the field phases of the project simplified the effort considerably.

James R. Mitchell of NOL is to be commended for his part in the handling of the logistics of this project both in the laboratory and in the field.

The authors wish to express their gratitude to Walter Malmborg of NOL, who performed the machine analysis of the data and to M/Sgt Arlington E. McGee, USAF, for his efforts in preparing the report for publication.

Appreciation is expressed to the personnel of Edgerton, Germeshausen, and Grier, Inc., for their willing cooperation in all phases of the project.

CONTENTS

ABSTRACT 5
FOREWORD 7
ACKNOWLEEDGMENTS 7
ILLUSTRATIONS 11
TABIES 12
CHAPTER 1 INTRODUCTION 13
1.1 Objectives and Scope 23
1.2 Background 14
1.2.1 History 14
1.3 Theory 15
1.3.1 The Methods of Measurement 15
1.3.2 Determination of the Arrival. Time Data 15
1.3.3 Determination of the Peak Shock Overpressure by the Velocity Method 19
1.3.4 Scaling Factors 21
CHAPTER 2 INSTRUMENTATION 23
2.1 Shot Summary and Participation 23
2.2 Rocket Instrumentation 23
2.2.1 The Smoke Rocket and the Rocket Launcher 23
2.2.2 The Launching Site 25
2.2.3 Power and Timing at Launching Sites 26
2.3 Photographic Instrumentation 26
CHAPTER 3 RESULTS 30
3.1 Instrumentation 30
3.1.1 Projects 1.1a and 1.1b 30
3.1.2 Project 1.1d 30
3.2 Shot 1 32
3.2.1 Arrival Time Data 32
3.2.2 The Velocity and Peak Shock Overpressure- Distance Data 33
3.2.3 The Jet 38
3.3 Shot 2 39
3.3.1 The Arrival Time Data
3.3.2 The Velocity and Peak Shock Overpressure- 39
Distance Data 52
3.4 Shot 3 53
3.5 Shot 4 53
3.5.1 Arrival Time Data 59
3.5.2 The Velocity, and Feak Shock Overpressure- Distance Data
63
63
3.6 Shot 5
63
63
3.6.1 Fireball Data
3.6.1 Fireball Data
64
64
3.7 Shot 6 64
3.7.1 Arrival Time Data
64
64
3.7.2 The Peak Shock Overpressure-Distance Data.
72
72
3.8 Surface Effects
72
72
3.9 Accuracy of Results 73
3.9.1 Sources of Error
73
73 77
3.9.2 Spatial Accuracy
3.9.2 Spatial Accuracy
3.9.3 Timing Accuracy. 78
3.9.4 The Accuracy of Peak Shock Overpressures 79
3.9.5 The Accuracy of the Vertical Data of Shot 2 79
CHAPTER 4 DISCUSSION OF RESULTS 80
4.1 Scaled Results
80
80
4.1.1 Scaled Peak Shock Overpressure-Distance Data
80
80 82
4.1.2 Scaled Arrival Time Data
4.1.2 Scaled Arrival Time Data
4.2 The Vertical Data of Shot 2
82
82
4.2.1 The Low-Altitude Data 82
4.2.2 The High-Altitude Data
4.2.2 The High-Altitude Data 84
4.3 Surface Effects 90
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 91
5.1 Instrumentation 91
5.1.1 Photography 1.1a and 1.1b 91
5.1.2 Photography l.1d 91
5.1.3 Smoke Rockets
91
91
5.2 Experimental Results
92
92
5.2.1 Surface Pressure-Distance Data
92
92
5.2.2 The Vertical Data of Shot 2
92
92
5.2.3 Surface Effects 92
APPENDIX A DETERMINATION OF THE HORIZONTAL AIMING ANGLES 93
A.1.1 Shot 2 93
A.1. 2 Shot 4 96
APPENDIX B METEOROLGGICAL DATA AIOFT FOR SHOT 2 97
BIBLIGGRAPHY 98
ILLUSTRATIONS
1.1 Geometry of the Primary and Secondary Planes of Measurement 17
1.2 Plan and Elevation Views of the nth Flane of Measurement 20
2.1 Instrumentation Layout, Bikini 24
2.2 Instrumentation Layout, Eniwetok 25
2.3 The Variable Elevation Launcher and Associated Equipment. 27
2.4 The Fan Grid Rocket Launching Station 27
2.5 Firing Circuit and Associated Equipment 28
3.1 Fireball Arrival Time Data, Shot 1 34
3.2 Surface Shock Arrival Tine Data, Shot 36
3.3 Surface Fireball Velocity vs Distance, Shot 38
3.4 Surface Peak Shock Cverpressure vs Distance, Shot 1 39
3.5 The Assumed. Form of the Horizontal Jet, Shot 1 40
3.6 Horizontal Jet Data, Shot 1 41
3.7 Firebail Photographs Showing the Jet of Shot 1 42
3.8 Fireball Photographs Showing the Vertical Protrusion of Shot 2 43
3.9 High Altitude Arrival Time Data, Shot 2 45
3.10a Photographs of the First Wave Observed at Great Altitudes 46
3.10b Photographs of the Second Wave Observed at Great Altitudes 47
3.1l Fireball Arrival Time Data, Shot 2 51
3.12 Shock Arrival Time Data, Shot 2 52
3.13 Fireball Velocity vs Distance, Shot 2 54
3.14 Peak Shock Overpressure vs Distance, Shot 2 55
3.15 Fireball Photographs Showing the Vertical Protrusion of Shot 4 60
3.16 Fireball Arrival Time Data, Shot 4 61
3.17 Surface Shock Arrival Time Data, Shot 4 62
3.18 Fireball Velocity vs Distance, Shot 4 66
3.19 Surface Peak Shock Overpressure vs Distance, Shot 4 67
3.20 Fireball Arrival Time Data, Shot 5 68
3.21 Fireball Photographs Showing the Vertical Protrusion of Shot 6 69
3.22 Fireball Arrival Time Data, Shot 6 73
3.23 Surface Shock Arrival Time Data, Shot 6 74
3.24 Surface Peak Shock Overpressure vs Distance, Shot 6. 75
3.25 The Growth of the Water Cloud Behind the Shock Front of Shot 4 76
4.1 Surface Pressure-Distance Data Scaled to 1 KT at Sea Level 81
4.2 Surface Arrival Time Data Scaled to 1 KT at Sea Level 83
4.3 Theoretical Surface Curves Derived from Shot 2 and IVY Mike Data 85
4.4 Verticai Pressure-Distance Data of Shot "2 Shown with Curves Yredicted from NOL Theory 36
A. 1 Plan and Elevation Views of the Ceometry of the Optical Axis of the Primary 'Canera A. 2 Use of a Fiducial Marker of Unknown Location 9495
TABLES
1.l Summary Data for All Shots
22
22
2.1 Shot Participation
23
23
2.2 Rocket Instrumentation 26
2.3 Photofraphic Instrumentation 29
3.1 Fhotographic Instrumentation Results 31
3.2 Observed Arrival Time Data, Shot 35
3.3 Arrival Time, Velocity and Feak Shock Overpressure, Shot 1
37
37
3.4 Jet Data, Shot
37
37
3.5 Observed High Altitude Arrival Time Data, Shot 2 44
3.6 Observed Suriace Arrival Time Data, Shot 2 48
3.7 Observed Vertical Arrival Time Data, Shot 2 50
3.8 Arrival Time, Velocity, and Peak Shock Overpressure, Shot 2 56
3.9 Ooserved Arrival Time Data, Shot 4 57
3.10 Arrival Time, Velocity, and Peak Shock Overpressure, Shot 4
59
59
3.11 Observed Arrival Time Data, Shot 5 65
3.12 Calculated Arrival Time, Shot 5 65
3.13 Observed Arrival Time Data, Shot 6 70
3.14 Arrival Time, Velocity, and Peak Shock Overpressure, Shot ó 71
4.I Scaled Pressure-Distance Data 87
4.2 Composite Free-Air Arrival Time Data for 1 KT 88
4.3 Arrival Time Data Scaled to 1 KT at Sea Level 89
Neteorological Data Alof't for Shot 2 97

INTRODUCTION

1.1 OBJECTIVES AND SCOPE

At the request of the Armed Forces Special Weapons Project, (AFSWP), the U. S. Naval Ordnance Laboratory (NOL) instituted Project 1.1 on Operation CASTLE. This project was designed to aid in the accomplishment of the mission of the Department of Defense Weapons Effects Test Program. I/

The objectives of Froject 1.la were to determine the peak shock overpressure in air as a function of distance in regions:
a. Along the surface, and
b. Vertically above ground zero.*

The objective of Project l. lb was to obtain further information relative to the formation, Erowth, and magnitude of precursors and other visible observable effects that might be formed as well as to obtain peak shock overpressure data on shots not instrumented by l.la.

The objectives of Project l.ld, Aerial Photography, were two-fold. Only one was intimately connected with Frojects l.la and l.lb, namely to measure the motion of the shock wave on the water's surface as recorded on aerial motion pictures to obtain a pressure-distance relation. These measurements were to be made to extend the range of pressures well beyond that obtained under Projects I.la and l.Ib, and to obtain pressure-distance data in radial directions not observable in the records of Projects 1.la and l.lb. The second objective, which is discussed in the report on Project 1.1c, "Base Surge Measurements by Photography" was to take aerial photographs of the base surge to enable its motion to be measured in directions not covered by the conventional tower photography.
*. The Rankine-Hugoniot relation between shock pressure and velocity can be used only if the direction of shock propagation is known; consequently the measurements were restricted to the horizontal and the vertical.

1.2 EACKGROUND

With respect to a study of military effects, the importance of pressure-distance data in air is well founded. These data, used in conjunction with other information, namely knowledge of the formation and magnitude of frecursors and other thermal effects and knowledge of the mechanical effects of the surface, contribute to the general understanding of shock wave behavior and enhance the ability to predict the biast fields resulting from explosions. When this information is correlated with damage studies it aids in predicting the effects that may be expected from the actual use of nuclear or thernonuclear weapons.

The pressure-distance data obtained on IVY Mike were limited to pressures less than 20 psi. Thus data obtained at higher pressures would be of use for verification of the scaling methods at these higher levels.

Recently at the NOL a theory $\frac{2,3 /}{}$ concerning the transmission of blast from high yield weapons (of the order of 1 MT or greater) through a non-honogeneous atmosphere was postulated. The theory indicates that the effects of the non-homogeneous atmosphere become apparent at relatively low altitudes. Operation CASTLE, then, presented an opportunity to make measurements of the effect of altitude on blast which it was hoped could be correlated with the theory.

1.2.1 Ristory

The smoke-rocket trail photograyhic technique used on Project l.la to obtain peak overpressure in air was felt to be a suitable method on this operation in light of the results achieved on the JANGLE surface shot. The technique, developed at the NOL, was first used on Operation GREENHOUSE 47 and proved to be a success. On subsequent operations, JANGLE 5/TUMBLER,6/IVY,7/ and UPSHOTKNOTHOLE, 8 satisfactory results were obtained. The technique was modified slightly for use on IVY, as it was for this operation, to conform to geographic limitations.

Project l. lb utilized the method of direct shock photography to obtain its objectives. The method has been used with gratifying results by the NOL and other organizations on previous operations.

Aerial photography, Project l.ld, was used on CROSSROADS 9/ and GREENHOUSE 10 with limited success and accuracy because of cloud interference, low observation angles, and other distorting effects. Even though such difficulties were anticipated on CASTLE, NOL was asked to include the project chiefly because this technique might have been able to provide a means to confirm and extend the measurements made from the tower camera records under somewhat different experimental conditions. Nevertheless for reasons discussed in Section 3.1.2 the records obtained for Project l.ld were not useful for extending or confirming the surface measurements obtained through Projects l.la and l.1b.

1.3 THEORY

1.3.1 The Methods of Measurement

The method of measurement and the subsequent pressure calculations for Frojects l.la and l.lb were essentially the measurement of shock position or radius in time. From these direct measurements shock velocity and in some instances shock pressure were compiled. The methods of measurements and the smoke rocket technique are described in detail in reference (4) and to a lesser degree in references (5, 6, 7, and 8).

The shock front in many cases can be photographed directly; this is a result of light refracted by the shock front. Project 1.lb* (Direct Shock Photography) was totally dependent upon this effect. The films obtained for Project l.la (Smoke Rocket Photography) were not, because the shock front did not need to be rendered visible to be detected. The position of the shock front was established through the grid of smoke trails established behind the burst. The light rays which were reflected from the grid and passed tangentially to the shock front were refracted and caused breaks to appear in the otherwise continuous grid lines.

All of the films were measured in the same general manner. The position of ground zero was established and the position of the shock front was determined with respect to it. These measurements were made with respect to time on 20X magnified projections which were obtained through a direct projection Recordak.

1.3.2 The Determination of the Arrival Time Data

From past experience it was known that to obtain accurate results with either the smoke rocket or the direct shock photographic technique, the magnification factor** should not be much greater than $300 \mathrm{ft} / \mathrm{mm}{ }^{* * *}$ (this figure does not apply to measurements made in the

[^0]region of the fireball), even though the resolving power of the syster inight seem to be adequate at somewhat higher values. If this figure is exceeded the accuracy of the method frils rapidly because of the inability to detect the position of the shock or the apparent breaks in the smoke trails and hence the location of the shock. For this reason, lenses of large focal lengths were used for Projects l.la and l. Ib. These limited the field of view, and because of the magnitude of the effects, it was necessary to use a series of cameras to cover the event. The Project 1.1 cameras for any given shot were all located at one station; therefore, to obtain adequate horizontal coverage without loss of continuity, the horizontal aiming angle of each camera used for this purpose was such that the field of view of each camera slightly overlapped those of adjacent cameras. Consequently the planes of measurement* did not constitute portions of a singie plane. Ground zero was visible in the field of at least one of the caneris. See Fig. 1.l.

The chief problem encountered in the determination of the arrival time curve was the correlation of the data obtained from the discontinuous planes of measurement of the l.la and l.lb films. It was found that the effects of elongation normally encountered in non-innear photogramnetry could be neglected on the l.la and l.lb filas but it was necessary to make these corrections on the Project l3.2 films.

The data obtained from the discontinuous measurement planes could be correlated if the following conditions were met:
a. The fireball was symmetric about the origin in the region of the surface in which the correlation was to be made.

With the exception of Shot 6, films obtained from different camera stations were available for each shot (refer to Tables 2.3 and 3.1). Through these films it was possible to check for gross asymnetries in the fireball growth along the surface (see Section 3.9.2). No asymmetry** of this nature was noted in two of the shots requiring correlation.***
b. The horizontal aiming angle of each camera was known and the position of ground zero was known in one of the films.

On Shots 2 and 4 it was found that the horizontal aiming angles were not correct. The methods used for correcting the aiming angles may be found in Appendix A. The nominal aiming angles and the corrected aiming angles are given in Table 2.3. The nominal aiming

[^1]
angles lead to large discrepancies* in the position of ground zero in the measurement planes of the subsequent** comeras. Further the primary*** cameras were not aimed at ground zero and as a result ground zero had to be assumed to be at the midpoint of the fireball dianeter along the surface.

After the position of ground zero was established in the plane of measurement of the primary camera, and the horizontal aiming angles were found, the data were correlated as follows:

The primary record was measured directly by the methods outlined in Section l.3.1. The subsequent records were measured in the same manner except that the position of the shock front was measured with respect to the point, P_{n}, at which the vertical centerline ${ }^{*} *_{*_{*}^{*}}$ of each frame intersected the surface $\mathrm{m}^{* * * * *}$ (refer to Fig. 1.2******).

The distance from ground zero to this point (GZP n) was easily determined.

The offset is given by

$$
\begin{equation*}
\overline{G Z P P_{n}}=R \sin \phi_{n} \tag{1.1}
\end{equation*}
$$

The film scaling factor is given by

$$
\mathrm{m}_{\mathrm{Fn}}=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{f}_{\mathrm{n}}}
$$

and the drawing scaling factor by

$$
\begin{equation*}
\mathrm{m}_{\mathrm{Dn}}=\frac{\mathrm{L}_{n}}{\mathrm{f}_{\mathrm{n}} \mathrm{~m}_{\mathrm{r}}} \tag{1.2}
\end{equation*}
$$

[^2]Where $\overline{\mathrm{GZ}} \mathrm{P}_{n}=$ the offset of the nth camera (ft)

$$
\begin{aligned}
\mathrm{m}_{\mathrm{Fn}} & =\text { the film scaling factor of the nth camera }(\mathrm{ft} / \mathrm{mm}) \\
\mathrm{I}_{\mathrm{n}} & =\mathrm{R} \cos \not \mathrm{nn}^{\cos \theta_{\mathrm{n}}(\mathrm{ft})} \\
\text { camera }(\mathrm{mm})^{\mathrm{f}_{\mathrm{n}}} & =\text { the effective focal length of the lens of the } n t h
\end{aligned}
$$

${ }^{m_{D n}}=$ the drawing scaling factor of the nth camera ($\mathrm{ft} / \mathrm{mm}$)
$m_{R}=$ the magnification of the Recordak
The distance from ground zero to the shock front is given by

$$
\begin{equation*}
\mathrm{r}=\overline{\mathrm{GZ}} \mathrm{P}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}} \tag{1.3}
\end{equation*}
$$

where $\mathrm{r}=$ the distance from ground zero to the shock front, and $d_{\mathrm{n}}=$ the distance from P_{n} to the shock front. (The distance from ground zero to the shock front was determined frame by frame and a relative time base was established by the timing marks on the film.)

The distance-time data obtained from the measurement of the subsequent records were correlated by establishing a common absolute time base for all records. The absolute time base was established through the data obtained from the primary record, which was expressed in terms of zero time.* The arrival time data obtained from the primary record in the region overlapping the data of the first subsequent record were plotted. The times corresponding to the distances taken from the subsequent record were read from the curve. In this manner the timing of the first few frames of the subsequent record was adjusted to the absolute time scale. The relative time base of the second subsequent record was obtained in the same way via the first subsequent record.

The films obtained for Project 13.2 were measured in the same manner as the primary film. The resultant data were expressed in terms of zero time through a comparison to distances as described above.

1.3.3 The Determination of Peak Shock Overpressure by the Velocity Method

From the shock arrival time data, instantaneous shock velocities were determined. This was done by fitting the data with a smooth curve which could be expressed in closed mathematical form. Differentiation of the empirical equation gave velocity as a function of distance.

[^3]This equation was fitted, by the method of least squares, to the arrival time data on IBM equipment. Upon differentiation, the following equation was optajned for the instantaneous shock velocity:

$$
\begin{equation*}
U=A\left[1+\left(\frac{B}{r}\right)^{1.5}\right] \tag{1.7}
\end{equation*}
$$

A complete explanation of the derivation of the equation and the method of fitting may be found in reference (7).

The peak pressure of the shock wave was calculated for values of the instantaneous shock velocity by use of the Rankine-Hugoniot. relation:

$$
\begin{equation*}
P_{s}=\frac{2 \gamma p_{0}}{\gamma+1}\left[\left(\frac{U}{c_{0}}\right)^{2}-1\right] \tag{1.8}
\end{equation*}
$$

where $P_{S}=$ peak shoch overpressure, (psi)
$\mathrm{p}_{\mathrm{O}}=$ ambient pressure ahead of the shock (psi)
$=$ the ratio of specific heats* for air (1.40)
$\mathrm{U}=$ shock velocity (ft/sec)
$\mathrm{T}_{\mathrm{O}}=$ ambient temperature (${ }^{\circ} \mathrm{C}$)
$\mathrm{C}_{\mathrm{O}}=$ the speed of sound ahead of the shock

$$
=1,089\left[1+\frac{T_{0}}{273}\right]^{1 / 2}(\mathrm{ft} / \mathrm{sec})
$$

1.3.4 Scaling Factors

All of the scaled data presented were reduced to an equivalent 1 KT burst at standard gea level conditions.** The scaling factors are defined as follows 67 :

Pressure: $S_{p}=\frac{P_{2}}{P_{1}}=\frac{14.7}{P_{0}}$
Distance: $\quad S_{d}=\frac{r_{2}}{r_{1}}=\left(\frac{p_{0}}{14,700 \mathrm{~W}}\right)^{1 / 3}$
Tine:

$$
\begin{equation*}
S_{t}=\frac{t_{2}}{t_{1}}=\left(\frac{T_{0}+273}{293}\right)^{1 / 2}\left(\frac{p_{0}}{14,700 W}\right)^{1 / 3} \tag{1.10}
\end{equation*}
$$

[^4]where $P_{1}=$ unreduced peak shock overpressure (psi)
$P_{2}=$ peak shock overpressure reduced to standard atmospheric pressure (psi)
$r_{1}=$ unreduced distance ($f t$)
$r_{2}=$ distance reduced to 1 KT at sea level (ft)
$t_{1}=$ unreduced time (sec)
$t_{2}=$ time reduced to 1 KT at sea level (sec)
$W^{2}=$ yield of weapon in megatons
$p_{0}=$ atmospheric pressure (psi)
$\mathrm{T}_{\mathrm{o}}=$ ambient temperature (${ }^{\mathrm{C}} \mathrm{C}$)
The scaling factors used and those data used to derive them are given in Table l.l.

TABLE 1.1 - Summary Data for All Shots

INSTRUMENTATION

2.1 SHOT SUMMARY AND PARTICIPATION

Projects l.la, l.lb, and l.ld were activated on those shots indicated in Table 2.1.

TABIE 2.1 - Shot Participation

Shot	1	2	3	4	5	6
Projects	1.1 a-b-d	$1.1 \mathrm{~b}-\mathrm{d}$	$1.1 \mathrm{a}-\mathrm{b}-\mathrm{d}$	$1.1 \mathrm{a}-\mathrm{b}-\mathrm{d}$	$1.1 \mathrm{~b}-\mathrm{d}$	$1.1 \mathrm{~b}-\mathrm{d}$

On the second and fifth shots it was not feasible to set up rocket stations because all potential launching sites were highly contaminated by lingering radiation from previous detonations. Shot 6 was not instrumented with rockets because of possible interference with other projects. The general layouts of all stations are shown in Figs. 2.1 and 2.2.

2.2 ROCKET INSTRUMENTATION

A summary of the rocket instrumentation may be found in Table 2.2

2.2.1 The Smoke Rocket and the Rocket Iauncher

The smoke trails which formed the background grid were generated by $5.0^{\prime \prime}$ spin-stabilized rockets, $12 /$ which were made up of a 5.0" Mark 3 Mod 0 electric-firing motor and a modified 5.0" Mark 10 head loaded with ten pounds of FS chemical smoke $\operatorname{mix}\left(55 \% \mathrm{HClSO}_{3}\right.$ and $45 \% \mathrm{SO}_{3}$) 。

The launcher used on this operation consisted of a 5.0" Mark 50 launching tube mounted on a rugged base made of $2^{\prime \prime}$ steel pipe. The tube was suspended from the framework by means of a pillow block bolted to a plate which was welded to the tube at the center of

Fig. 2.1 Instrumentation Layout, Bikini

\circ	0
0	\circ
0	0
0	0
0	0
w	ω

\circ	0
0	0
0	0
0	O
0	w

(160,000
Fig. 2.2 Instrumentation Layout, Eniwetok
gravity (i.e. when loaded). With this type of construction the tube could be rotated to any desired angle of elevation. Reference is made to Fig. 2.3.

2.2.2 The Launching Site

The limited dry land area available for launching sites made it necessary to use the fan grid 77 rather than the usually preferable vertical grid 4,5,6,8/.

With the exception of Station 110.04 , which used a single battery, there were two identical batteries of eight launchers apiece at each launching site. These batteries were located along opposite sides of a $100 \mathrm{ft} \times 50 \mathrm{ft}$ plot and were staggered so that launchers were not directly opposite one another. The launchers of each battery were oriented to fire in the same direction at different angles of elevation ranging from 20° to 85°. A typical station is shown in Fig. 2.4

TABLE 2.2-Rocket Instrumentation

Shot	Rocket Station No. and Location	Direction of Fire	Grid	Power and Timing	Range GZ To Rkt. Sta. (Pt)
1	$\begin{gathered} 110.02 \text { Bikini } \\ \text { N } 169,752 \\ \text { E } 83,023 \\ \hline \end{gathered}$	$\begin{array}{r} 65^{\circ} \\ 347^{\circ} \end{array}$	Full Fan 16 Roundis	$\begin{array}{r} 120 \text { VAC } \\ -15 *,-5 \mathrm{sec} \\ \hline \end{array}$	8056
3	```1.10.04 Bikini N 98,707 E 101,698```	340°	Half Fan 8 Rounds	$\begin{aligned} & 120 \text { VAC } \\ & -15,-5 \sec ^{* *} \end{aligned}$	8229
4	$\begin{gathered} 110.03 \text { Bikini } \\ N 169,752 \\ \text { E } 117,014 \end{gathered}$	$\begin{aligned} & 45^{\circ} \\ & 127^{\circ} \end{aligned}$	Full Fen 16 Rounds	$\begin{aligned} & 120 \text { VAC } \\ & -15^{*},-5 \mathrm{sec} \end{aligned}$	8056
All - 15 sec signals operated through a 5 sec delay relay. Timing Signals by radio.					

2.2.3 Fower and Timing at Launching Sites

Power was provided until zero time by an engine-alternator set located at each launching station. Timing signals, available at -15 and -5 sec, were provided by cable from the Edgerton Germeshausen \& Grier ($E \& G$) timing station, except at station 110.04 , where they were

In view of the time of flight of the rockets and the duration of the trails, the optimur firing time was -10 sec . Consequently the -15 sec signals were made to operate a 5 sec delay relay. The -5 sec signal served as a backup signal.

The firing circuit and ascociated gear are shown in Fig. 2.5.

2.3 FHOTUGRAPHIC INSTRUMENTATION

The basic films of Projects $1 . l a$ and 1.1 lb were obtained by ag\&G. In addition to these, accurate prints of others taken by $2 \times H \& f$ for Froject 13.2 (Early Cloud Photography) were used to extend the coverage of the basic films. All of the records used were cbtained by high speed Mitchell cameras. Timing marks appeared on the original l.la and $1 . l b$ records at a rate of 100 cps. Timing marks did not appear on the copies of the 13.2 films used but the velocities of these films were given by hG\&G.

The photographic records of Project l.ld were cbtained by the Lookout Nountain Laboratory. One Éclair camera was used for each shot. Timing was provided by a clock appearing in each frame. Reference is made to Section 3.1 and Table 3.1.

The photographic instrumentation plan is found in Table 2.3. This table includes only those records which were used quantitatively.

Fig. 2.3 The Variable-Elevation Launcher and Associated Equipment

Fig. 2.4 The Fan Grid Rocket Launching Station

Fig. 2.5 Firing Circuit and Associated Equipment

TABIE 2.3 - Photographic Instrumentation

	Film \& Proj.	Camera Sta.	$\begin{gathered} \text { Range From } \\ \overline{G Z}(\mathrm{ft}) \end{gathered}$	Lens Focal Length (mm)	$\begin{aligned} & \text { Nomina } \\ & \text { Horiz. } \end{aligned}$	$\begin{aligned} & \text { Aim } \\ & \text { Vert. } \end{aligned}$	$\begin{gathered} \text { Corrected } \\ \text { Aim } \\ \text { Horiz } \end{gathered}$	$\begin{gathered} \text { Resolution } \\ (f t) \end{gathered}$	$\begin{gathered} \text { Magnification } \\ \mathrm{ft} / \mathrm{mm} \end{gathered}$
	$\begin{aligned} & \hline \frac{\text { SHOT } 1}{24054(13.2)} \\ & 24079(1.1 \mathrm{a}) \end{aligned}$	$\begin{aligned} & 1302.03 \\ & \text { Tare Is. } \end{aligned}$	77,764	$\begin{gathered} 25.29 \\ 152.2 \end{gathered}$	$\begin{aligned} & 0^{0} \\ & 0^{0} \end{aligned}$	$2^{\circ} 30^{\prime}$	$\begin{aligned} & 0^{\circ} \\ & 0^{\circ} \end{aligned}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{array}{r} 3075 \\ 510 \end{array}$
N	$\begin{aligned} & \text { SHOT } 2 \\ & \frac{1}{24554(13.2)} \\ & 24575(1.1 \mathrm{~b}) \\ & 24576(1.1 \mathrm{~b}) \\ & 2^{1}+577(1.1 \mathrm{~b}) \\ & 2^{\prime}+562(13.2) \end{aligned}$	$\begin{gathered} \text { 1302. } 03 \\ \text { Tare Is. } \\ " \\ " \\ " \\ \text { 1301 } \\ \text { Elmer Is. } \end{gathered}$	$\begin{aligned} & 77,872 \\ & 77,872 \\ & 77,872 \\ & 77,872 \\ & 1,040,900 \end{aligned}$	$\begin{gathered} 25.29 \\ 152.2 \\ 249.6 \\ 248.8 \\ 35.89 * \end{gathered}$	$\begin{gathered} 0^{\circ} \\ 0^{\circ} \\ 20^{\circ} 30^{\prime} R \\ 5^{\circ} 4^{\prime} 5^{\prime} R \\ \sim 0^{\prime} \end{gathered}$	$\begin{gathered} 0^{\circ} \\ 2^{0} 30^{\prime} \\ 1030^{\prime} \\ 1030^{\prime} \\ \sim!0^{\circ} \end{gathered}$	$\begin{gathered} 0^{\circ} \\ 26^{\prime} \mathrm{R} \\ 2^{\circ} 1 I^{\prime} \cdot \mathrm{R} \\ 5^{\circ} 31^{\prime} \mathrm{R} \end{gathered}$	$\begin{array}{r} 50 \\ 10 \\ 7 \\ 7 \\ \hline \end{array}$	$\begin{array}{r} 3079 \\ 511 \\ 312 \\ 313 \\ 29,000 \end{array}$
	$\begin{aligned} & \text { SHOT } 4 \\ & \frac{4}{24150(13.2)} \\ & 2+180(1.1 a) \\ & 24181(1.1 a) \\ & 24182(1.1 a) \end{aligned}$	$\begin{gathered} 1302.02 \\ \text { How Is } \\ \text { " " } \\ \text { " } " \end{gathered}$	$\begin{aligned} & 55,416 \\ & 56,416 \\ & 56,416 \\ & 56,416 \end{aligned}$	$\begin{aligned} & 25.29 \\ & 249.2 \\ & 250.0 \\ & 250.7 \end{aligned}$	$\left\{\begin{array}{c} 0^{\circ} \\ 20^{\prime} 0^{\prime} R \\ 50^{\prime} 5^{\prime} R \\ 9^{\circ} \mathrm{R} \end{array}\right.$	$\begin{aligned} & 1^{40} 50^{\prime} \\ & 1^{\circ} 30^{\prime} \\ & 10^{\prime} 30^{\prime} \\ & 1^{\circ} 30^{\prime} \end{aligned}$	$\begin{gathered} 33^{\prime} \mathrm{R} \\ 2^{\circ} 37^{\prime} \mathrm{R} \\ 4^{\circ} \mathrm{O}^{\prime} \mathrm{R} \end{gathered}$	$\begin{array}{r} 50 \\ 7 \\ 7 \\ 7 \end{array}$	$\begin{array}{r} 2156 \\ 226 \\ 226 \\ 225 \end{array}$
	$\begin{aligned} & \frac{\text { SHCT } 5}{24250(13.2)} \\ & 24253(13.2) \end{aligned}$	$\begin{aligned} & 1302.02 \\ & \text { How Is. } \\ & 1300 \\ & \text { Nan Is. } \end{aligned}$	$\begin{aligned} & 56,450 \\ & 84,125 \end{aligned}$	$\begin{aligned} & 25.29 \\ & 35.34 \end{aligned}$	$\begin{aligned} & 0^{\circ} \\ & 0^{\circ} \end{aligned}$	$\left\{\begin{array}{l} 14^{\circ} 50^{\prime} \\ 0^{\circ} \end{array}\right.$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 2158 \\ & 2380 \end{aligned}$
	$\begin{aligned} & \text { SHOT6 } \\ & 2+477(1.1 b) \\ & 24478(1.1 b) \end{aligned}$	1304 Yvonne Is.	$\begin{array}{r} 75,312 \\ 75,312 \\ \hline \end{array}$	$\begin{aligned} & 248.1 \\ & 251.1 \end{aligned}$	$\begin{aligned} & 2_{3} 35^{\prime} R \\ & 50^{\prime}+5^{\prime} R \end{aligned}$	$\left[\begin{array}{ll} 1^{\circ} 30^{\prime} \\ 1^{\circ} & 30^{\prime} \end{array}\right.$	-	$\begin{array}{r} 7 \\ 7 \\ \hline \end{array}$	$\begin{array}{r} 303 \\ 298 \\ \hline \end{array}$
	Camera Station Coordinates:		$\begin{array}{ll} \text { Part Used. } \\ 1300 & \mathrm{~N} \\ 1302.02 \mathrm{~N} \\ 1302.03 & \mathrm{~N} \\ 1301 & \mathrm{~N} \\ 1304 & \mathrm{~N} \end{array}$		$\begin{array}{ll} 3768 & Z \\ 056 & 2 \\ 3424 & 2 \\ 3188 & Z \\ 438 & 2 \end{array}$	300^{\prime} 75^{\prime} 75^{\prime} 125' 15^{\prime}			

CHAPTER 3

RESULTS

3.1 INSTRUMENTATION

3.1.1 Projects 1.1 la and 1.1b

The smoke rockets of Froject l.la were fired successfully on the three shots so instrumented.

The films obtained for these projects were satisfactory and the photographic methods employed proved successful. The discrepancies in the horizontal aiming angles of the cameras on Shots 2 and 4 had no serious effects. The chief loss caused by these aiming errors was the restriction of the coverage on Shot 4 , but this loss was made up in fart by the less accurate data obtained from Froject 13.2 films. A list of all films and their uses, including those of Project 13.2 , may be found in Table 3.1.

It should be pointed out that the conditions under which the cameras were set up and final adjustments made were very poor. The EGRG versonel were limited in the time that could be spent in the aiming of the cameras as a result of lingering radiation and were handicapped by poor visibility. The work done was highly creditable in light of these conditions.

3.1.2 Project 1.12

Project l.ld (Aerial Photography) was not successful and no usable data were obtained. With the exception of Shots 2 and 4 the cloud cover was sufficient to obscure the field of view. On these shots the films were badly overexposed* for approximately the first

[^5]TABIE 3.1 - Photographic Instrumentation Results

Project	Film	Results
SHOT 1		
1.10	22 Mag 117 C	Not used, Obscured by clouds
1.1a	24079	Fireball and jet data
1.1a	24080	*
1.1a	24081	Not used, obscured by jet
1.1a	24082	" " " "
13.2	24050	Asymmetry check, qualitative
13.2	$24052\}$	jet and fireball observations
13.2	24053	
13.2	24054	Shock measurements
13.2	24055	Same as 050, 052, 053
SHOT 2		
1.1d	Mag 121D	Not used. First 30 sec overexposed
1.1b	24575	Fireball data
1.1b	24576	Shock measurement
1.1b	24577	
1.16	24578	Not used. Shock not visible
13.2	24552	Shock measurements asymmetry check
13.2	24553	Asymetry check, fireball observations
13.2	24554	Shock meas. both vertical and surface
13.2	24555	Asymmetry check fireball observations
13.2	24562	High altitude effects
SHOT 4		
1.1d	Mag 132a	Not used. First 30 sec overexposed
1.1a	24179	
1.1 a	24180	Fireball data
1.1a	24181	Shock measurements
1.18	24182	
13.2	24150	" " Fireball observations
13.2	24153	Asymmetry check
SHOT 5		
1.1d	Mas 125E	Not used. Obscured by clouds
1.1 b	24279	Film irradiated, $\overline{\mathrm{GZ}}$ not known
1.1 b	24280	Not used. Film irradiated, GZ not known
(Co		
* Films not obtained as a result of a mechanical failure.		

TABLE 3.1 - Photographic Instrumentation Results (Con't)

Project	Film	Results
SHOT 5 (Con't)		
1.1 b	24281	*
1.1 b	24282	*
13.2	2,250	Fireball data
13.2	24253	
SHOT 6		
	24408	Fireball observations
1.10	24475	Not used. ${ }_{\text {" }}$ "Z not known
1.16	24476	
1.1 b	24477	Fireball data
1.1b	24478	Shock measurements
- Films	not obtai	result of a mechanical

30 sec , which was the region of interest. The Shot 2 film was analyzed but the resultant data were not usable, chiefly because of the large uncertainties* in timing and the position of the aircraft with respect to ground zero. It was not possible to analyze the Shot 4 film because of the inability to establish ground zero in the film.

3.2 SHCP 1

As a result of the unexpectedly high yield, the cloud cover, and the set which emanated from the east side of the fireball, a great deal of pctential information was lost. The cloud cover precluded the possibility of obtaining much vertical data and the growth of the jet along the line of coverage rendered two of the three l.la films useless.

3.2.1 Arrival Time Data

It was noted that the growth of the fireball was not the same along the surface as it was vertically above ground zero. The vertical growth was greater than that along the surface. In the early frames of film 24,079, a bulging on the west side of the fireball was apparent. (See Fig. 3.7)

Because the top of the fireball was obscured by the clouds arter about 30 msec , it is not known whether the vertical protrusion, observed on all of the barge shots, existed.

[^6]The surface arrival time data presented were derived from films 24,079 (Project 1.1) and 24,054* (Project 13.2). The data obtained from the Project l. 1 film covered the first 5300 ft and the Project 13.2 film data extended from 7500 ft to $10,500 \mathrm{ft}$. The shock front was not visible in the region not covered.

The type of surface** over which these data were obtained could not be clearly ascertained. Ground zero was on a causeway that ran from Charlie Island toward Baker Island. The baselines of the planes of measurement of the two films extended over the reef. Consequently it was impossible to know precisely what type of surface it was. It was assumed to be primarily water.

As a result of the variations in the slope of the fireball surface arrival-time curve, it was necessary to fit this region in three parts. The data were fitted by an empirical equation of the form of 1.4 . The equations for these parts of the fireball region were found to be:

Surface	r	$=9287 t^{0.430}$	$500 \leq r_{h} \leq 1350$ (ft)
Surface	r	$=7260 t^{0.376}$	$1350 \leq r_{h} \leq 3400(f t)$
Surface	r	$=7576 t^{0.397}$	$3400 \leq r_{h} \leq 4500$ (ft)
Vertical	r	$=8338 t^{0.402}$	$500 \leq r_{v} \leq 1500$ (ft)

(Subscripts " h " and " v " refer to horizontal and vertical distances respectively.)

The arrival time data obtained after shock breakaway which occurred sometime between 0.3 and 0.4 sec were fitted by equation 1.6 and the constants were found to be:
$A=990 \quad B=13,908 \quad C=-20.2 \quad 7500 \leq r \leq 10,500(\mathrm{ft})$
The observed arrival time data are presented in Table 3.2. The fitted data are given in Table 3.3 and are shown with the observed data in Fig. 3.1 (fireball region) and Fig. 3.2.

3.2.2 The Velocity and Peak Shock Overpressure-Distance Data

The fitting functions were differentiated to obtain the expressions for the instantaneous velocities, U, at the desired distances. The following were obtained in the fireball region:
Surface $U_{2 h}=2728 t^{-0.624}=7061 \times 10^{6} r_{h^{-}} 1.661 \quad 1350 \leq r_{h} \leq 3400$ (ft) (3.1)
Surface $U_{h}=3007 t-0.603=2371 \times 10^{6} r_{h}-1.520 \quad 3400 \leq r_{h} \leq 4500$ (ft) (3.1a)

[^7]

Fig. 3.1 Fireball Arrival Time Data, Shot I

TABLE 3.2-Observed Arrival Time Data, Shot 1

$\begin{array}{r} \text { Time } \\ (\mathrm{Sec}) \\ \hline \end{array}$	$\begin{aligned} & \text { Distan } \\ & \text { Surface } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { e From GZ } \\ & \text { ft) } \\ & \text { Vertical } \end{aligned}$	$\begin{array}{r} \text { Time } \\ (\mathrm{Sec}) \\ \hline \end{array}$	Distance From $\overline{\mathrm{GZ}}$ (ft Surface	$\begin{array}{r} \text { Time } \\ (\mathrm{Sec}) \\ \hline \end{array}$	$\begin{aligned} & \text { Distance } \\ & \text { From } \overline{G Z},(\mathrm{ft}) \\ & \text { Surface } \end{aligned}$
0.0007	413	463				
0.0108	1325	1368	1.3252	8613	2.1092	10,972
0.0210	1730	1752	1.2976	8699	2.2495	11,129
0.031 .1	2000		1.3076	8730	2.5000	11,750
0.0412	2230		1.3677	8777	2.500	
0.0513	2412		1.3855	8896		
0.0614	2567		1.4457	8926		
0.0716	2701		1.3978	8966		
0.0817	2847		1.3878	8982		
0.0918	2968		1.4178	8997		
0.1120	3197		1.4880	9172		
0.1323	3393		1.4980	9172		
0.1424	3489		1.4679	9234		
0.1829	3854		1.5180	9281		
0.2031	4023		1.5681	9406		
0.2234	4177		1.5762	9411		
0.2436	4317		1.6182	9454		
0.2638	4448		1.5160	9458		
0.3744	4695		1.5982	9580		
0.3347	4851		1.6365	9630		
0.3549	5028		1.5882	9673		
0.3958	5304		1.6867	9677		
0.9970	7405		1.6884	9799		
0.9236	7466		1.6683	9799		
0.9939	7625		1.7184	9799		
0.9970	7640		1.7570	9801		
1.0070	7782		1.7084	9815		
1.0972	7924		1.7685	9878		
1.0371	7972		1.7986	9893		
1.0943	7985		1.8272	9942		
1.0872	8067		1.8186	10,004		
1.1345	8096		1.7886	10,051		
1.1473	8129		1.8888	10,207		
1.0872	8146		1.8875	10,254		
1.1847	8268		1.8687	10,270		
1.2074	8383		1.9288	10,270		
1.2248	8409		1.9088	10,316		
1.1974	8414		1.9890	10,348		
1.2475	8446		2.0090	10,411		
1.2750	8534		1.9990	10,536		
1.3076	8556		2.0892	10,957		

Fig. 3.2 Surface Shock Arrival Time Data, Shot 1
The vertical data and the early surface data were not differentiated because there were not sufficient data in this region to justify it. Pressures are not presented in the fireball region. The surface velocity-distance data are presented in Table 3.3 and Fig. 3.3

For the region after shock breakaway the following was
obtained:

$$
\begin{equation*}
u=990\left[1+\left(\frac{13,908}{r}\right)^{1.5}\right] 7,500 \leq r \leq 10,500(f t) \tag{3.2}
\end{equation*}
$$

The horizontal velocities were used in conjunction with the ambient conditions* to derive the peak shock overpressures for the corresponding distances. These data may be found in Table 3.3 and Fig. 3.4.

[^8]TABLE 3.3 - Arrival Time, Velocity and Peak Shock Overpressure, Shot 1

$\begin{aligned} & \text { Distance } \\ & \text { From } \overline{\mathrm{GZ}} \\ & \text { (ft) } \end{aligned}$	Surface	I Time Vertical	$\begin{gathered} \hline \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \\ \text { Surface } \end{gathered}$	Peak Shock Overpressure (psi)
500	0.0012	0.0009		
1000	0.0056	0.0051		
1500	0.0150	0.0140	37460	
2000	0.0324		23220	
2500	0.0586		16030	
3000	0.0952		11840	
3400	0.1323 *		9911*	
4000	0.2003		7930	
4500	0.2696		6630	
5000	0.3643		5585	397
+ 4.5500	0.4594		4973	314
* $\% 6000$	0.5654		4486	251
**6500	0.6822		4090	206
\cdots	0.8098		3764	171
7500	0.9478		3491	140
8000	1.0961		3260	124
9000	1.4225		2893	94.5
10000	1.7867		2615	73.0
10500	1.9823		2500	64.9
* Average of the two fitted curves. $* *$ Interpolated from equation 3.2 .				

TABIE 3.4 - Jet Data*, Shot 1

$\begin{aligned} & \text { Time } \\ & (\mathrm{Sec}) \end{aligned}$		$\begin{aligned} & \text { ance }(f t) \\ & \left(L_{o}-R\right) \end{aligned}$			Approximate Volume ft^{3}
0.0108	1691	366	14.4	27	9.7×10^{6}
0.0210	2227	497	208	59	30.7×11
0.0311	2576	576	257	67	50.2×1
0.0412	2891	661	311	53	80.3 x "
0.0513	3120	708	351	75	$115{ }^{\text {x }}$
0.0614	3327	760	377	61	134 X "
0.0716	3492	791	417	53	160 x "
0.0817	3659	812	1,35	53	183 x "
0.0918	3793	825	14.8	67	$204 x^{\prime \prime}$
* See Fig. 3.5					

Fig. 3.3 Surface Fireball Velocity vs Distance, Shot 1

3.2.3 The Jet

A jet emanated from the east side of the fireball and grew along the pipeline that extended from ground zero to Station 1201. The growth of the jet was almost parallel* to the plane of measurement of film 24,079, and it was possible to make measurements of its growth for the first 100 msec . During this time (10 to 100 msec) the velocity of the jet with respect to GZ was 1.29 times that of the main firebail. Comparison was made at nine points in time during the interval and the ratio varied only between the limits of 1.28 to 1.30 .

[^9]

Fig. 3.4 Surface Peak Shock Overpressure vs Distance, Shot 1
The jet was assumed to take the form of a truncated semicircular cone* in order to determine the volume (see Fig. 3.5). The jet data are presented in Table 3.4 and Fig. 3.6. Photographs are shown in Fig. 3.7.

3.3 SHOT 2

Three of the films obtained for Project l.l were of fair quality and were used in the analysis. The horizontal aiming angles were not as indicated in the instrumentation plan, but it was possible to make the necessary corrections. Films taken for Project 13.2 were used to extend the coverage of the 1.1 films.
3.3.1 Arrival Time Data

It was noted that the fireball growth was greater vertically than it was along the surface. A nipple-like protrusion appeared at the top of the fireball at about 40 msec and it continued to grow

[^10]

ELEVATION VIEW
Fics. 3.5 The Assumed Form of the Horizontal Jet, Shot 1
throu;hout the fireball period. The protrusion began to rupture and appeared to release the detonation products of the fireball at about 300 msec, which was roughly the time of shock breakaway. Refer to Fig. 3.8.

As.a result of the appearance of the vertical protrusion the vertical fireball data were fitted in two parts, before the arrival and after the arrival of the protrusion. Both surface and vertical data were fitted by equation 1.4 and the equations were found to be:

Vertical
$r=6478 t^{0.350}$.

$$
\begin{aligned}
& 1100 \leq r_{v} \leq 2250(f t) \\
& 2250 \leq r_{v} \leq 4500(f t) \\
& 1000 \leq r_{h} \leq 4500(f t)
\end{aligned}
$$

The surface shock-arrival data presented were derived from rilms $24,575,24,576,24,577,24,552$, and 24,554. The baselines of the planes of measurement of these films encompassed both land and w"iter surfaces. Data obtained from film 24,575 (Project l.1) and

Fig. 3.6 Horizontal Jet Data, Shot 1.
films 24,552 and 24,554 (Project 13.2)* were measured over a water surface.** The majority of the data presented that were obtained from the other two usable Project 1.1 films (24,576 and 24,577) were measured over a land surface. The two sets of data were fitted separately.

* These two films were taken from different camera stations. No asymmetry was detected in the shock growth along the surface.
** As on Shot 1 ground zero is not visible. It is 10 ft below the horizon. The plane of measurement of film 24,554 was over the reef. The plane of measurement of film 24,552 was chiefly over the lagoon.

$$
t=0.0918 \mathrm{sec}
$$

Fig. 3.7 Fireball Photographs Showing the Jet of Shot 1

g. 3.8 Fireball Photographs Showing the Vertical Protrusion of Shot 2

TABLE 3.5 - Observed High Altitude Arrival Time Data, Shot 2

Time (Sec)	Distance Above Surface (Thousands of Feet)
205	266
210	270
212	273
213	273
215	280
216	275
217	280
218	278
220	285
221	288
222	288
223	288
225	292
226	295
228	298
230	300
231	300
232	303
233	301
235	304
236	309
237	309
238	311
240	314
241	314
242	318
243	321
245	325
246	323
250	332

Vertical data beyond the fireball region were obtained from film 24,554 in the region from $10,000 \mathrm{ft}$ to $15,000 \mathrm{ft}$ directly above ground zero. The spatial uncertainty of these data was of the order of 400 ft . (See Sections 3.9.2 and 3.9.5.)

Tro weve fronts were observed* at very great altitudes ($\sim 265,000 \mathrm{ft}$ to $\sim 335,000 \mathrm{ft}$) on film 24,562. The arrival time of the first vave was measured from $\sim+205 \mathrm{sec}$ to $\sim+250 \mathrm{sec}$, at which time the top of the wave went beyond the range of the film. No usable data vere obtained for the second wave front because it was very difficult to discern on the copy of film 24,562 used for the measurement.

[^11]

Fig. 3.9 High Altitude Arrival Time Data, Shot 2

The spatial uncertainty of the measurements made of the first wave was large* and the velocities obtained from these data should be considered as approximations only. The velocities obtained by NOL and EG\&G for the first wave front differed by about 20 per cent (See 4.2.2.) This large difference can easily be accounted for through the large spatial uncertainty.

These data are shown in Table 3.5 and are plotted in Fig. 3.9. Photographs obtained from the film are found in Fig. 3.10a and 3.10b. These prints are negatives; the wave front is more easily seen in them than it would be in positive prints.

The shock arrival time data near the surface, both surface and vertical, were fitted by equation 1.6 and the constants were found to be:

* This film was obtained from Elmer Island, 200 miles away from $\overline{\mathrm{GZ}}$. Thus the film scale was large $(\sim 20,000 \mathrm{ft} / \mathrm{mm})$. Further the film was overexposed and therefore grainy. The external geometry of the system was not completely known and it was necessary to make several approximations to determine the altitudes. The wave front was non-spherical and as a result the proper corrections to be made for elongation in the measurement plane were not known. However, the normal corrections ${ }^{4 /}$ for the spherical case were made. It should also be pointed out that the film used for the measurements was a copy.

The maximum spatial uncertainty was unknown, but it is believed to be of the order of 10 per cent.

$$
t=210 \mathrm{sEC}
$$

$\downarrow \downarrow$

$$
t=230 \mathrm{SEC}
$$

\dagger

$$
t=250 \mathrm{sEc}
$$

Fig. 3.10a Photographs of the First Wave Observed at Great Altitudes

$$
t=350 \mathrm{sEC}
$$

3.10b Photographs of the Second Wave Observed at Great Altitudes

TABLE 3.6 －Observed Surface Arrival Time Data，Shot 2

$\begin{aligned} & \text { Time } \\ & \text { (sec) } \end{aligned}$	$\begin{aligned} & \text { Distance From } \\ & \mathrm{GZ}(\mathrm{ft}) \end{aligned}$		$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{gathered} \text { Distance From } \\ \overline{G Z}(\mathrm{ft}) \end{gathered}$	
0.0066	987		0.5641	5447	
0.0168	1410		0.5532	5458	
0.0269	1690		0.5901	5622	
0.0371	1916		0.6086	5733	
0.0473	2106		0.6270	5781	
0.0574	2263		0.6640	5903	
0.0676	2408		0.6816	6116	
0.0777	2535		0.7009	6156	
0.0879	2660		0.7378	6269	
0.0981	2775		0.7470	6306	
0.1082	2880	＋	0.7655	6367	
0.1184	2988	4	0.8116	6558	
0.1387	3170	¢	0.8578	6676	
0.1590	3350	¢	0.8762	6843	
0.1793	3504	∞	0.8855	6864	
0.1997	3652	H	0.8947	6928	
0.2200	3794	E	0.9039	6937	
0.2403	3926	场	0.9224	6987	
0.2606	4035		0.9408	7030	
0.2809	4133		0.9593	7066	9
0.3013	4236		0.9686	7111	0
			1.0147	7284	4
0.3216	4319		1.0239	7304	¢
0.3311	4411	\％	1.0424	7330	\sim
0.3521	4509		1.0287	7382	\bigcirc
0.3501	4553	\bigcirc	1.0187	7398	02
			1.0488	7414	
0.3716	4595		1.0690	7429	$\stackrel{\square}{2}$
0.3686	4600		1.0598	7432	$\stackrel{2}{2}$
0.3818	4691		1.0701	7448	$\stackrel{4}{+}$
0.4055	4786		1.0801	7451	＋
0.3919	4789		1.0891	7509	
0.4020	4825	9	1.0978	7517	
0.4240	4877	0	1.1207	7539	
0.4223	4881	4	1.1193	7540	
0.4332	4928	\＆	1.0991	7583	
0.4426	4945	0	1.1255	7606	
0.4424 0.4628	4979	0	1.1494	7641	
0.4628 0.4794	5051 5164	∞	1.1595	7678	
0.5033	5225	ค	1.1696		
0.5163	5315	z	1.1817	7734	
0.5347	5390	く	1.1293	7745	家
0.5439	5407	＋			傢

TABLE 3.6 - Observed Surface Arrival Time Data, Shot 2, (Cont'd)

TARIE 3.7-Observed Vertical Arrival Time Data, Shot 2

$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Distance } \\ \frac{\mathrm{GZ}}{\mathrm{Z}}(\mathrm{ft}) \\ \hline \end{gathered}$		$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Distance From } \\ & \text { GZ (ft) } \end{aligned}$
0.0066	1121		2.2359	
0.0168	1534		2.3667	12,045 12,045
0.0269	1828		2.3667 2.4371	12,045
0.0371 0.0173	2041		2.6081	12,277
0.0371 0.0574	2249		2.6584	12,509
0.0574 0.0676	2401		2.8093	12,562
0.0576 0.9777	2575 2748		3.1614	12,970
0.0879	2748 2887	$\stackrel{+}{\square}$	3.2117 3.3123	13,030
0.0981	3018	<	3.3123 3.0608	13,200
0.1082	3148	∞	3.4129	13,368
0.1184	3242	${ }^{1}$	3.3626	13,582 13,782
0.1387	3455	¢	3.5638	13,782 13,797
0.1590	3655	H	3.6644	13,797 13,952
0.1793	3842	E	3.5135	13,952 14,194
0.2203 0.21103	4170 1403			14,194
0.21133 0.2606	4303 4432		3.8141 3.8656	14, 14,498
0.2606	4432		3.8153	14,650
1.5217	8971		4.0668	14,725
1.6273	9552		3.9763 4.9266	14,803
1.4572	9708		4.0266 4.1876	14, 803
1. 5 ¢ 18	9708		4.1876 4.1976	$\underline{14}, 803$
1.7933	10,118		4.1976 4.2177	14,803
2.0643	10,803		4.2177 3.7650	14,833
2.0345	10,944		3.7650 3.9461	14, 84.8
1.9844	10,959		3.9461 4.0165	144, 14.80
2.0148	11,115		4.2580	14,909
2.3164	11,379		4.2580 3.9361	14,909
2.0850	11,426		3.9361 4.2379	14,923
2.1655	11,426		4.2379 4.2680	14,923 14,923
2.3063	11,426		4.2680 4.0568	14,923
2.1856	11, 1.57		4.2882	15,945
2.1152	11, 581		4.28183	15,181
2.3265 2.1874 2.2963	11,581		4.1171	15,257
2.3265 2.2963	11,626		4.11	15,37
2.2963 2.2259	11,737 11,782			
2.3466	11,813			
$2 \cdot 368$	11,890			
2.5578	12,014			

Shot 2
Fig. 3.11 Fireball Arrival Time Data, Shot

Fig. 3.12 Shock Arrival Time Data, Shot 2
Surface, Water and Land $A=1377 B=9592 \mathrm{C}=-15.44500 \leq r_{h} \leq 7500$ (ft)
Surface, Water $A=726 B=16,272 C=3.77500 \leq r_{h} \leq 11,000$ (ft)
Vertical
$A=609 B=22,386 \mathrm{C}=3.610,000 \leq r_{v} \leq 1.5,000(f t)$

The observed arrival time data are presented in Tables 3.6 and 3.7. The calculated surface and vertical data are presented in Table 3.8. The calculated and observed data are shown in Figs. 3.11 (fireball) and 3.12.
3.3.2 The Velocity and Peak Shock Overpressure-Distance Data

The fitting functions were differentiated and the following were obtained:

The fireball region:

$$
\begin{aligned}
& \text { Vertical } \quad U_{v}=2267 t^{-0.650}=27,120 \times 10^{6} r_{v}^{-1.857} 1100 \leq r_{v} \leq 2250 \text { (ft) } \\
& \text { Vertical } \quad U_{v}=3094 t^{-0.597}=1756 \times 10^{6} r_{v}^{-1.481} 2250 \leq r_{v} \leq 4500 \text { (ft) } \\
& \text { Surface } \quad U_{h}=2561 t^{-0.619}=424.3 \times 10^{6} r_{h}-1.625 \quad 1000 \leq r_{h} \leq 4500 \text { (ft) }
\end{aligned}
$$

The region after shock breakaway which occurred sometime between 0.3 and 0.35 sec had the following velocities:

Suriace, Weter and Land	$U_{h}=1337$	$\left[1+\left(\frac{9592}{r_{h}}\right)^{1.5}\right]^{1} 4500 \leq r_{h} \leq 7500$ (ft) (3.5)
Surface, Water	$\mathrm{U}_{\mathrm{h}}=726$	$\left[1+\left(\frac{16,272}{r_{h}}\right)^{1.5}\right] 7500 \leq r_{h} \leq 11,000(f t)(3.6)$
Vertical	$U_{V}=609$	$\left[1+\left(\frac{22,386}{r_{v}}\right)^{1.5}\right]_{10,000 \leq r_{v} \leq 15,000(f)(3.7)}$

Peak shock overpressures were not computed in the fireball region. The velccity-distance data are presented in Table 3.8 and Fig. 3.13. The peak shock overpressure-distance data for both vertical* and surface data are preseated in Table 3.8 and Fjg. 3.14. It should be noted that the region ranging from 4500607500 ft was over land and the pressures obtained in this region were high. Since these pressures were calculated from the Rankine-Hugoniot relationship, they were dependent upon the assured speed of sound. It is reasonable to believe that the temperature of the air and, hence, the speed of sound were higher over the land than over the water; but no account was taken of this possibility in the calculations. If these higher temperatures, in fact, existed then the calculated pressures would have been higher than the actual pressures which existed. (See Section 3.9.4 and reference 13).

3.4 SHCT 3

No usable films were obtained on this shot because of the poor visibility and the unexpectedly low yield.

3.5 SHOT 4

The three films obtained for Project l. la were of very good quality and were all used in the analysis. The horizontal aiming angles were not as indicated but it was possible to make the necessary corrections. Films taken for Project 13.2 were used to extend the coverage.

[^12]

Fig. 3.13 Fireball Velocity vs Distance, Shot 2

Fig. 3.14 Peak Shock Overpressure vs Distance, Shot 2

TABLE 3.8-Arrival Tine, Veiocity and Peak whock Over;ressure, Shot 2

Listance From $\overline{\mathrm{GZ}}$	$\begin{aligned} & \text { Mrrival Time } \\ & \text { (sec) } \end{aligned}$			Velocities$(\mathrm{ft} / \mathrm{sec})$			Feak shock Overpressures $1 \mathrm{l} / \mathrm{in}^{2}$		
(ft)	Land Surface	water Surface	Vertical	Water-lan Surface	$\begin{aligned} & \text { Whater } \\ & \text { Surface } \end{aligned}$	Vertical	Water-land Surface	Water Surface	Vertical
1000	$\begin{aligned} & 0.4431 \\ & 0.5508 \\ & 0.6693 \\ & 0.7982 \\ & 0.9370 \\ & 1.0852 \end{aligned}$	0.00680.01950.04150.07460.12040.18030.25610.3487	$\begin{aligned} & 0.0048 \\ & 0.0153 \\ & 0.0348 \\ & 0.0618 \\ & 0.0971 \\ & 0.1423 \\ & 0.1882 \\ & 0.2658 \end{aligned}$	$\begin{aligned} & 4890 \\ & 4417 \\ & 4040 \\ & 3734 \\ & 3482 \\ & 3271 \end{aligned}$	$\begin{array}{r} 56620 \\ 29280 \\ 18360 \\ 12770 \\ 9500 \\ 7390 \\ 5950 \\ 4917 \end{array}$	$\begin{array}{r} 72920 \\ 34310 \\ 20120 \\ 16300 \\ 12440 \\ 9900 \\ 8130 \\ 6823 \end{array}$	$\begin{aligned} & 304 \\ & 245 \\ & 201 \\ & 170 \\ & 1 / 44 \\ & 125 \end{aligned}$	$\begin{gathered} 106 \\ 91 \\ 65.4 \\ 48.8 \\ 38.3 \end{gathered}$	56.141.831.825.519.014.8
1500									
2000									
2500 3000									
3500									
4000									
4500									
5000									
5500									
6000									
75000									
7500		1.0920							
8000		1.2620			3051 2838				
9000 10000		1.6386			2498				
11000		2.0621 2.5305	1.5631		2234	2649			
12000		2.5305	1.062 2.504 2.082		2033	2377			
13000 14000			2.504 2.987			2161			
14000 15000			3.511			1985 1840			
15000			4.074			1840			
						1719			

TABLE 3.9 - Observed Arrival Time Data Shot 4

$\begin{aligned} & \text { Time } \\ & \text { (sec) } \end{aligned}$	Listance GZ (f Suríace	From Veirtical	$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{aligned} & \text { Distance From } \\ & \text { GZ (ft) } \\ & \text { Surface } \end{aligned}$
0.0070	912	994	0.3883	4330
0.0160	1213	1320	0.3986	4376
0.0249	1476	1539	0.15089	4430
0.31 .28	1832	1917	0.4793	4462
0.0517	1979	2058	0.4296	4523
0.0607	2107	2207	0.11502	4525
0.0697	2219	2343	0.4605	4659
0.0786	2331	2456	0.4708	4787
0.0876	2426	2564	0.1817	4717 4767
0.0965	2511	2664	0.4914	4805
0.1055	2610	2772	0.5017	4851
0.12444 0.1234	2692	2886	0.5120	4878
0.1234 0.1323	2763	2989	0.5223	4917
0.1223 0.11 .13	2844		0.5326	4976
0.14173	2912	3153	0.5429	5019
0.1502	2976	3232	0.5532	5055
0.1581	3043		0.5635	5095
0.1592	3049	3328	0.5738	5114
0.1617	3077		0.5944	5222
0.1668 0.1681	3105 3107	3405	0.6150	5272
0.1771	3171	3485	0.6356 0.6562	5359
0.1860	3233	3574	0.6666	5432
0.1950	3297	3657	0.6769	5507
0.2039	3355	3729	0.6975	5559
0.2091	3385		0.7181	5623
0.2176 0.2235	3418 3438 3468		0.7387	5696
0.2260	3466		0.7593 0.7696	5750
0.2338	3483		0.8005	5802
0.2447	3572		0.8211	5981
0.2515	3600		0.8417	6034
0.2647 0.2685	3636 3705		0.8623	6094
0.2685 0.2854	3705 3815		0.8726	6146
0.2853	3824		0.8932 0.9138	6213
0.3024	3906		0.9242	6255 6305
0.3059	3926		0.9448	6367
0.3265	4027		0.9654	6420
0.3368	4087		0.9860	6484
0.3471	4125		0.9997	6505
0.3577	4239		1.0096	6514
0.3790	4288		1.0066	6541

TABLE 3.9 - Observed Arrival Time Data, Shot 4, (Cont'd)

$\begin{aligned} & \text { Tine } \\ & (\mathrm{sec}) \end{aligned}$	Distance From $\overline{G Z}$ (ft) Surface	$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	Distance From CZ (ft) Surface	$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	```Distance From }\overline{\textrm{GZ} (ft) Surface```
1.0195	6542	1.7933	8592		
1.0272	6604	1.8330	8595	2.5770 2.7754	10,348
2.0592	6634	1.8032	8625	2.784 2.7853	10,535 10,554
1.0394	6645	1.8230	8629	2.784 2.8448	10,554 10,584
1.0900	66.75	1.8528	8659	2.9448 2.9837	10,584 10,648
1. 3493	6579	1.8032	8695	2.9738	12,648
1.1088 1.1584	6758 6810	1.8826	8712	2.9738 3.0333	12,683 10,849
1.0989	6832	1.9024 1.9520	8726	3.9936	10,955
1.1286	6899	1.9024	8796	3.1325	11,041
1. 1082	6984	1.9123	8840	3.2317	11,274
1.1590	6998	1.9927	8886	3.3309 3.3706	11,348
1.2079	7075	1.9828	88848	3.3706	11,380
1.2873	7265	2.0016	9081	3.4499 3.3904	11,5?4
1.3567	7306	2.0520	9157	3.3904 3.3805	11,596 11,669
1.2972	7307	2.1107	9202	3.3805 3.5670	11,669
1.2774 1.3468	7317	2.1206	9214	3.5670 3.5789	11,9,2
1.3866	7436	2.1603	9225	3.5838	12,005
1.4183	7566	2.1300 2.2000	9265	3.7376	12,159
1.4956	$781+1$	2.1802	9341	3.7773	12,322
1.4858	7854	2.1901	9435	3.8467	12,380
1.5850	7933	2.3000	9435 9483	3.7872 3.975	12,443
1.5453	7942	2.3190	9644	3.9757 3.9658	12,495
1.5552	7942	2.3984	9752	3.9658 4.0253	12,733
1.5155	7944	2.3786	9783	4.0253 3.9856	12,733
1.5949	8000	2.3885	9795	3.9856 3.9558	12,778
1. 6.048	8105	2.3587	9837	3.9558 4.2733	12,806
1.6048	8107	2.3984	9918	4.2733	12,966
1.6842	8244	2.4381	9968	4.1245 4.2237	13,130
1.6941	8298	2.4579	9968	4.2237 4.3229	13,126
1.701.	8324	2.4975	10,016	4.3229 4.2634	13,408
. .7536	84.44	2.5274	10,016 10,158	4.2634 4.2832	13,445
. .7340	8460	2.6166	10,158	4.2832 4.5208	13,467
. 7833	8516	2.5869	10,169	4.5808 4.5610	13,564
. 7535	8542	2.6067	10,184	4.5610	13,586
		2.6067	10,212	4.8585	13,978
				4.8684	14,118
				1.8784	14,233

Tf.ELE 3.10 - Arrival Time, Velocity and Peak Shock Cverpressure Shot 14

$\begin{array}{\|c} \text { Distance } \\ \text { From GZ } \\ (f t) \\ \hline \end{array}$	$\begin{gathered} \text { Arrival } \\ (\mathrm{sec}) \\ \text { Surface } \end{gathered}$	Time Vertical		ity sec) Vertical	Peak Shock Overpressure $\mathrm{lb} / \mathrm{in}^{2}$ Surface
1000	0.0092	0.0071	42700		
1500	0.0258	0.0234	22800	26060	
2000	0.0538	0.0475	14580	17.110	
2500	0.0950	0.0822	10320	12350	
2750		0.1026		11870	
3000	0.1513	0.1248	7780	$1.0 \leqslant 4.0$	
3500	0.2241	0.1768	6130	8760	
4000	0.3186		5173		340
4500	0.4229		4460		250
5500	0.5428 0.6779		3921		188
6000	0.8283		3501		146
5500	0.9936		3166 2895		117
7000	1.1809		2708		79.5
7500	1.3718		2536		68.2
8000	1.5749		2391		58.7
9000 10000	2.0157		2161		44.6
10000	2.01992 3.0215		1986		35.2
12000	3.0215 3.5790		1850		28.3
13000	4.1687		1742		23.5
1/4000	4.7873		1581		16.1

3.5.1 Arrival Time Data

The same general effects that were observed in the fireball region of Shot 2 were noted on this shot. There were indications of the vertical protrusion as early as 30 msec which became definite at approximately 60 msec . The rupture began at about 280 msec . (Refer to Fig. 3.15).

The vertical fireball data were fitted in two parts and both surface and vertical data were fitted by equation 1.4. The equations were found to be:

Vertical	$r=5498 t^{0.345}$	$1000 \leq r_{v} \leq 1500$	$(f t)$
$\underline{\text { Vertical }}$	$r=6893 t^{0.406}$	$1500 \leq r_{v} \leq 2500$	$(f t)$
$\underline{\text { Vertical }}$	$r=7537 t^{0.443}$	$2500 \leq r_{v} \leq 3700$	$(f t)$
$\underline{\text { Surface }}$	$r=6292 t^{0.392}$	$1000 \leq r_{h} \leq 3500$	$(f t)$

Fig. 3.15 Fireball Photographs Showing the Vertical Protrusion
of Shot 4

Fig. 3.16 Fireball Arrival Time Data, Shot 4

Fig. 3.17 Surface Shock Arrival Time Data, Shot 4

The surface shock-arrival data presented were derived from films 24,180, 24,18., 24,182, and 24,150 (Project 13.2). The Project l.ia data covered the first 6600 ft , and the usable data from the Project 13.2 film covered the region from 6000 ft to $14,000 \mathrm{ft}$. Shock breakaway is believed, to have occurred between 0.2 and 0.3 sec . All data were obtained over a water surface and ground zero was on the horizon. There were no vertical data obtained in the shock region. The shock arrival time data were fitted in two parts by equation 1.0 and the constants were found to be:

$$
\begin{array}{llll}
A=770.7 & B=12,782 & C=-9.6 & 3500 \leq r \leq 6500 \\
A=965 & B=10,381 & C=-26.2 & 6500 \leq r \leq 14,000
\end{array}(\mathrm{ft})
$$

The observed and calculated arrival time deta are presented in Tables 3.9 and 3.10 and are shown in Figs. 3.16 and 3.17.*

3.5.2 The Velocity and Peak Shock Overpressure-Distance Data

The fitting functions were differentiated to obtain expressions for the instantaneous velocities, U, at the desired distances. For the fireball region the following was obtained:

Vertical $U_{v}=2799 t^{-0.594}=1149 \times 10^{6} r^{-1.462} 1500 \leq r_{v} \leq 2500$ (ft) (3.8)
Vertical $U_{v}=3337 t^{-0.557}=253.9 \times 10^{6} r^{-1.259} 2750 \leq r_{v} \leq 3700$ (ft) (3.8a)
Surface $U_{h}=2466 t^{-0.608}=1923 \times 10^{6} r_{r}^{-1.551} \quad 1000 \leq r_{h} \leq 3500$ (ft) (3.9)
For the shock region the following was obtained:

$$
\begin{array}{ll}
U=770.7 & {\left[1+\left(\frac{12,782}{r}\right)^{1.5}\right] \quad 3500 \leq r \leq 6500(f t) \quad(3.10)} \\
U=965 & {\left[1+\left(\frac{10,381}{r}\right)^{1.5}\right] \quad 6500 \leq r \leq 14,000(f t) \quad(3.10 a)}
\end{array}
$$

Peak shock overpressures were not calculated in the fireball region. The velocity-distance data are presented in Table 3.10 and Fig. 3.18. The peak shock overpressure data are presented in Table 3.10 and Fig. 3.19.

3.6 SHOT 5

Three of the four cameras used to obtain the Project 1.1 data on Shot 5 jammed before zero time. The film obtained from the fourth

[^13]camera (24,280) was fogged by radiation and was of no great value.* Films 24,250 and 24,253, which were obtained for Project 13.2, were used in the analysis of this shot. All data obtained for this shot were in the fireball region.

3.6.1 Fireball Data

The two Project 13.2 films used in the analysis were taken from different camera stations. (Refer to Table 2.3.) Fireball diameters were reasured along the surface from the two films and the resulting measurements did not agree. It appeared that the rate of growth of the fireball was non-uniform along the surface.** The growth as viewed from Station 1300 appeared greater than that viewed from Station 1302.02. No reasonable estimate could be made of shock breakaway from these films. A similar disagreement was noted on the vertical measurements. The disagreement was the result of film anomalies resulting from overexposure during the fireball period (the Iijms were not designated for fireball measurements) ${ }^{2} * *$ and small errors in the copying process. Film 24, 250 was considered to be the more accurate.

Both sets of deta were fitted by equation 1.4 and the equations were found to be:

| Vertical | 24,250 | r |
| :--- | :--- | :--- | | Surface | 24,250 |
| :--- | :--- |$\quad r=7229 t^{0.398} 0.404$

$$
\begin{array}{ll}
1500 \leq r_{v} \leq 4500 & (f t) \\
1500 \leq r_{h} \leq 4000 & (f t) \\
1500 \leq r_{v} \leq 4500 & (f t) \tag{ft}\\
1500 \leq r_{h} \leq 4500 & (f t)
\end{array}
$$

These observed and calculated data are presented in Tables 3.11
2 and Fig. 3.20 . and 3.12 and Fig. 3.20.

3.7 SHOT 6

Two usable films $(24,477$ and 24,478$)$ were obtained for this shot and both were used in the analysis. The primary Pilm $(24,477)$ was of fair quality. The other was extremely good.

3.7.1 The Arrival Time Data

The fireball arrival time data were obtained from film 24,477,

* The fireball was not completely visible and the horizontal aiming angle was in doubt. Consequently, the position of ground zero was not kncwn.
** Ground Zero was in the foremround in both films.
late These films were exposed under conditions to obtain data at Accordimes consequently they were overexposed in the fireball region. 0.06 ing the film 0.06 mm on the film ($\sim 150 \mathrm{ft}$ in the plane of measurement).

TABIE 3.11 - Observed Arrival Tine Lata, shot 5

TABLE 3.12 - Calculated Arrival Time, Shot 5

Distance From GZ $(f t)$	Film 24250 Arrival Time (sec)		Film 24253 Arrival (sec)	
1500	0.0205	0.0144	Time	
2000	0.0417	0.0296	0.0165	0.0118
2500	0.0724	0.0519	0.03348	0.0245
3000	0.1136	0.0822	0.904	0.0431
3500	0.1663	0.1210	0.1320	0.1010
4000	0.2008	0.1694	0.1831	0.1416
4500		0.2277	0.2445	0.1907

Fig. 3.18 Fireball Velocity vs Distance, Shot 4
in which the fireball was not visible in its entirety (Fig. 3.21) and the horizontal aiming angle of the camera was in doubt. Further, ground zero was below the horizon and the height of the camera above the ground was not accurately known. As a result the correction for the vertical data (the distance that ground zero was below the horizon) could only be approximated ($\sim 50 \mathrm{ft}$). The uncertainty in the s round zero position was large. The error could have been as large as 100 ft , which would be serious in the fireball region.

The vertical fireball growth was found to be greater than the horizontal. (This was observed on film 24,408). The west side of the fireball near the surface, as viewed from Yvonne Island, appeared flattened. The vertical protrusion appeared between 65 and 75 msec . The time of the beginning of the rupture of the protrusion was difficult to establish. Refer to Fig. 3.21.

The fireball arrival time data were fitted by equation 1.4 and the equations were found to be:

Fig. 3.19 Surface Peak Shock Overpressure vs Distance, Shot 4

Fig. 3.20 Fireball Arrival Time Data, Shot 5

$t=0.0594 \mathrm{sEC}$

$$
t=0.2830 \mathrm{sec}
$$

Fig. 3.21 Fireball Photographs Showing the Vertical Protrusion
of Shot 6

TABLE 3.13-Cbserved Arrjval Time Lata, Shot 6

$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \end{aligned}$	$\begin{array}{r} \text { Dista } \\ \text { Surface } \\ \hline \end{array}$	$\overline{m \overline{G Z}}$ Vert
0.0086	724	
0.0188	1026	
0.0289	1215	1245
0.0391	1349	1387
0.0492	1469	1525
0.0594	1573	1644
0.0696	1685	1742
0.0797	1780	1854
0.0899	1867	1933
0.1001	1955	2041
0.1102	2029	2137
0.1204	2091	2137
0.1407	2209	2317
0.1611	2305	2505
0.1814	2403	2505
0.2017	2501	2643
3.1194	9080	
3.1700	9170	
3.2205	9256	
3.2711	9336	
3.3216	9409	
3.3722	9499	
3.4227	9583	
3.4733	9660	
3.5239	9730	
3.5744	9815	
3.6250	9905	
3.6755	9970	
3.7260	10,042	
3.7767	10,132	
3.8272	10,212	
3.8778	10,289	
3.9283	10,365	
3.9789	10,440	
4.0294	10,522	
4.0800	10,594	
4.1306	10,670	
4.1811	10,749	
4.2317	10,818	
4.2822	10,895	
4.3328	10,972	
$4 \cdot 3833$ 4.4238	11,040	
	11,093	

TABIE 3.14-Arrival Time, Velocity and Feak Shock Overpressure, Stot 6

The shock arrival time data were derived from film 24,478. The same uncertainties in the position of ground zero that existed in the data of film 24,477 are present in the data obtained from 24,478. These data however, cover the region from $9,000 \mathrm{ft}$ to $11,000 \mathrm{ft}$ and an error of 100 ft would not be serious. Time could not be expressed in absolute terms. The first frame of this record was assigned a time of 5 msec . The data derived from this film were obtoined in late frames and the RMS variation in the film speeds was found to be 0.05 msec per frame. The maximum timing uncertainty would range from 20 msec for the earliest usable frame to 25 msec for the last usable frame.

The horizontal shock arrival time data were fitted by equation 1.6 and the constants were found to be:

$$
A=1052 \quad B=6041 \quad C=-16.1 \quad 2500 \leq r \leq 11,000
$$

It should be noted that the fitted curve covers the dataless region. Arrival time data obtained from the preliminary version of reference (14) are shown with these data (both the interpolated and the observed data) in Fig. 3.23. The agreement is surprisingly good.

All observed and calculated arrival time data are presented in Tables 3.13 and 3.14. These data are shown in Figs. 3.22 and 3.23.

3.7.2 The Feak Shock Overpressure-Distance Data

As a result of the large uncertainties in the fireball region it was felt that the presentation of the fireball velocities would be unjustified. Shock breakaway was estimated to have occurred between 0.16 and 0.18 sec.

The following was obtained for the shock region:

$$
\begin{equation*}
U=1052\left[1+\left(\frac{6041}{r}\right)^{1.5}\right] \quad 2500 \leq r \leq 11,000(f t) \tag{3.11}
\end{equation*}
$$

In the region extending from 9000 ft to $11,000 \mathrm{ft}$ there were several points at which these data could be compared with other data given in the preliminary versions of references (13) and (14). The BRL data fell on both sides of the curve and the Sandia Corp. data were ~ 10 per cent lower.

The pressure-distance data are presented in Table 3.14 and
24 . Fig. 3.24.

3.8 SURFACE EFFECTS

No precursors were observed in the films. On all shots* what appeared to be a dense cloud of water was generated immediately behind the shock. It was particulary evident in the Project 1.1 films of Shots 2 and 4.

On Shot 4 the effect was clearly observed (see Fig. 3.25) t distance of 6600 ft , which was the extent of the coverage Project 1.1 films. As a result of the low magnification of the Project 13.2 films the actual generation of the cloud was the at any time in these films. However, there wise existance of the effect at much gre inaications of the be the cloud after it had increaseder distances. What appeared to 24,150. It is impossibla effect on this shot. Howevo place a limit on the persistence of this existed at a distance of the there are indications that the effect Shot 2 the effect was particulary of $20,000 \mathrm{ft}$ ($\sim 10 \mathrm{psi}$ region). On films (24,578) which was not usal developed in one of the l.l The effect was observed out to an (~ 25 psi), which was the extent estimated distance of 15,000 ft Project 13.2 films of this shot the coverage of the film. On the out to a distance of $\sim 23,000$ ft (~ 10 indications of the cloud (

The surface over which the shock traveled was visible on Shots 4 and 5 only. On the other shots the water cloud was visible over the horizon.

3.9 ACCURACY OF RESUTTS

3.9.1 Sources of Error

There were a number of possible sources of error which were inherent in the photogrammetric method of measurement that was used to determine the arrival time data from which the peak shock overpressures were ultimately derived. They were grouped in three general categories:

1. Sources of Spatial Errors
a. Reading Accuracy. This was dependent upon the static and dynamic resolutions of the system under actual conditions.
b. The uncertainty of the position of ground zero in the plane of measurement.
c. Scaling distances from the film. This was dependent upon the optical system, the camera aiming angles, the position of the camera with respect to ground zero, and the magnification of the device (Direct Projection Recordak) used for the measurement of the film.
2. Sources of Time Error
a. The correlation of relative time to absolute time. This was dependent upon the accuracy of the early spatial measurements and the accuracy to which the frame rate could be determined.

3. Sources of Pressure Errors

a. Uncertainties in the curve fitting. This was dependent upon the fitting function and the quality of the distance-time data.
b. The uncertainty of atmospheric conditions ahead of the shock front.

Most of the error sources and procedures for calculating the errors may be found in reference (4). A thorough discussion of the fitting function may be found in references (7) and (8). The following discussion of spatial, timing, and peak shock overpressure accuracies applies chiefly to Shots 1,2 , and 4 . Shot 5 was treated separately in Section 3.6 and Shot 6 was discussed in Section 3.7.1.

Fig. 3.23 Surface Shock Arrival Time Data, Shot 6

Fig. 3.24 Surface Peak Shock Overpressure vs Distance, Shot 6

3.9.2 Spatial Accuracy

Under ideal conditions the minimum spatial uncertainty of any film is limited by the static resolution, which is dependent upon the optical system of the canera,* and the dynamic resolution, which is a function of the shock velocity and the exposure time. The optimum static resolution of the lenses ranged from as high as 50 ft for the short focal lengths to 7 ft for the longer focal lengths. (See Table 2.3.) The dynamic resolution was significant in the early fireball region only. Maximum values of the order of 100 ft were obtained but these rapidly approached the actual static resolution. The effect was negligible after the first few frames of any record.

The conditions under which these films were obtained were not ideal. With few excentions** the reduction of the records was difficult during and after shock breakaway because of low contrast a result the stipulated staring of light in the humid atmosphere. As conditions cannot be statal that the actual lower limit resolution.

The method used to establish ground zero was dependent upon the symmetrical growth of the fireball along the surface. A check was made for non-uniform growth along the surface. Fireball diameters obtained from films taken from different camera stations were compared for each of the firebel However, it should be pointed out that detected (see Section 3.6). able for this comparison were obtained films (Project 13.2) availfocal length lenses and that the optimumrough cameras using the short fireball region was of the order of 50 static resolution even in the spread and the possibility of small errors in ther there was image considered (see Section 3.6). Consequently the film copying to be uniform growth along the surface could not the possibility of non-

Once ground zero was located could not be complety excluded. film, the position was determined on either the primary or the 13.2 holes or the vertical centerned with respect to either the sprocket or records in which the fireball for use in the subsequent frimes zero. The maximum variation of was not usable for establishing ground sprocket holes with respect to any

* In this case the resolving power of the film exceeds that of the lenses used. ** This was not true of the films obtained for Shot 4. The rocket trails were effective in alleviating these conditions. Parts of film 24,478 also were extremely clear.
$*_{* * *}^{* *} \quad$ This does not apply to the fireball region.
$*_{* * *} *^{*}$ This was not possible on Shot 6 .
$* * * *$ The vertical centerline lies midway between the sprocket holes on any given frame. The principal optical axis of the lens very nearly intersects this line. The lens and camera combinatious used to obtain the l.I films were calibrated so that the maximum deviation (in the films used) was 5 minutes of arc. Most of the deviations were 1 minute or less. Corrections were made for this deviation.

Fiven frame center was less than $]$ per cent. It was found that the Fosition of grourd zero as established in any fireball frame varied from. 0.05 millimeter to 0.07 millimeter* with respect to the sfrocket holes. This variation was negligible in the case of films cbtained with cameras of long focal lengths but it led to uncertainties in the position of ground zero of the order of 150 ft to 200 ft in the later frames of the records cbtained by the Project 13.2 cameras. The uncertainty in the horizontal aiming angles of Shots 2, 4, and 6 led to large uncertainties in the position of ground zero in the planes of measurement of the subsequent films. This uncertainty was of the order to 50 ft in the subsequent films of Shots 2 and 4 , and on Shot 6 it cculd have been as large as 100 ft .

The accuracy of scaling distance from the film was dependent ufon the measurements of the focal length of the lens used and the distance from the camera to the object plane. The uncertainties in tivese neasuremerts were known to be less than 0.1 per cent.

As a result of these considerations the maximum spatial uncertainty assigned to the horizontal distance data obtained from Project 1.1 reccrds, beyond the fireball region, was 50 ft (Shots 2 and 4). The maximum uncertainty assigned to the horizontal data obtained from the Project 13.2 films was of the order of 200 ft . The uncertainty of the vertical distance data obtained from film 24,554 was of the order of 400 ft . This was due to the extreme difficulty in observing the actual shock wave above ground zero.

3.9.3 Timing Accuracy

If the fireball arrival times contained in the tables are compared with those published by EG\&G, a discrepancy in distance will be noted. The $\operatorname{BC\& }$. data were obtained by constructing the best fitting semi-circle about ground zerc which intersected the fireball at several points. The NOL data were obtained along the surface (or along the vertical axis through ground zero) with no attempt made to average the resulting values. The primary records of Shots 1,2 , and $4 * *$ were used by EG\&G in conjunction with other films in their analysis of the fireball data. Thus the time base used was the same as that used by 0 G\&G. The frame times on these records were accurate to the nearest 0.01 msec .

The frame rates of the subsequent Project 1.1 films were deternined through the timing marks on the films. In all cases the frame rates were found to be very nearly constant before and throughout the region of interest. On Shots 2 and 4 the times were correlated with those of the primary record in the regions of overlap. The afreesent was good in all cases. The timing uncertainty ranged from minimum of 1 msec to a maximum of 10 rsec .

The Project 13.2 films were placed in terms of absolute time by comparing distance data obtained in the fireball region to the primary records of Project 1.1. The resulting uncertainties were of

[^14]the order of 2 msec . There were no timing marks on the copies of the 13.2 films analyzed. The frame rates were given by iG\&G. Figures were given for initial values and terminal values of the frame rate. The maximum difference in the time per frame between the initial and terminal points was found to be 0.1 msec. The uncertainty in time for the data obtained from these films ranges from a minimum of 2 msec to a maximum of approximately 50 msec at late times.

3.9.4 The Accuracy of Peak Shock Overpressures

The error introduced by the curve fitting was found to be slight. The standard deviation of the calculated distances from the observed distances was found to be l per cent or less. The maximum uncertainties of the resulting velocities obtained from the fitted data were found to be 1 per cent for the data obtained from the Project 13.2 films.

The condition of the atrosphere into which the shock grew during the period of observation was not known. If the atmospheric conditions can be assumed to be the same as those reported by the weather survey then the accuracy of the pressure presented is limited only by the velocity uncertainties, which would lead to pressure uncertainties ranging from a minimum of 3 per cent to a maximun of 10 per cent. With the exception of the Shot 4 data, the probable maximum uncertainty of the pressure data derived from arrival time data obtained over water surfaces was of the order of 10 per cent. The Shot 4 data were somewhat better. The probable uncertainty was of the order of 7 per cent.

The portion of the Shot 2 data was obtained over a land surface. These data were felt to be high as discussed in Section 3.3.2. Pressure results from the Project 1.2 b preliminary version of reference (13) bear out this contention.

3.9.5 The Accuracy of the Vertical Data of Shot 2

The determination of the position of the shock front in film 24,554 was extremely difficult. This difficulty resulted in large reading errors which could not be avoided. As a result the data were badly scattered.

These data were fitted by equation 1.6 and the standard deviation in terms of distance varied from 5 per cent at $10,000 \mathrm{ft}$ to 2 per cent at $15,000 \mathrm{ft}$. The uncertainties in the velocities derived from the fitting function were found to range from 6 per cent at $10,000 \mathrm{ft}$ to 3 per cent at $15,000 \mathrm{ft}$.

If the atmospheric conditions given by the weather survey were correct, the pressure uncertainties range from approximately 15 per cent at $10,000 \mathrm{ft}$ to 10 per cent at $15,000 \mathrm{ft}$. Small errors in the meteorological data aloft would have serious results in the pressures. If the weather data were correct to 2 per cent the resulting pressure uncertainites would be of the order of 20 per cent at $10,000 \mathrm{ft}$ and 15 per cent at $15,000 \mathrm{ft}$.

CHAPTER 4

DISCUSSION

4.i SCALED RESULTS

All of the surface data, both arrival time and pressure data, were reduced to a yield of 1 KT at standard sea level conditions $\left(\mathrm{T}=20^{\circ} \mathrm{C}, \mathrm{p}_{\mathrm{O}}=14.7 \mathrm{psi}\right)$. For comparative purposes these data, plotted with composite free air curves 87 scaled to 2 KT . The comparison to 2 KT assumed a reflection factor for blast of 2 for a surface shot. No yield based on radiochemistry has been assigned, so that this factor of 2 was used in determining the official yields, and hence no check of the factor was possible. Information relevant to the scaling of these data is given in Table l.l.

4.1.1 Scaled Peak Shock Overpressure-Distance Data

The scaled peak shock overpressure-distance data of Shots 1,2 , 4, and 6 are given in Table 4.1 . These data together with the JANGLE Surface $\frac{15}{2}$ and the IVY Mike 177 deta are shown in Fig. 4.1.

Excluding the land surface data of Shot 2, which was known to have been high, all of the data proved to be self-consistent within 5 per cent, which in the case of the CASTLE data was well within the stipulated maximum uncertainty (10 per cent). As compared to the free air composite curve scaled to 2 KT , the data of JANGLE, IVY, and CASTLE are approximately 10 to 15 per cent low in this pressure ($\sim 500 \mathrm{psi}$ to $\sim 10 \mathrm{psi}$). However considering the both the experimental data (~ 10 per cent) and the imum uncertainty of (~ 5 per cent) the agreement is not unreasonable free air composite It would appear then that the use of the
weapons of great yield in this region is justhese scaling laws for above, in spite of the reasonable an was stated scaled to 2 KT , these data did not assumption that the blast yield not demonstrate the validity of the the free-air yield, because the meth surface burst is effectively twice yield are dependent upon this assumption.

Fig. 4.1 Surface Pressure-Distance Data Scaled to 1 KT
at Sea Level

4.1.2 The Scaled Arrival Time Data

Data given in reference (8) were used to derive the composite free-air arrival-time curve; they are shown in Table 4.2.

The scaled arrival time data for CASTLE are presented in Table 4.3 and are compared to the free air curve for 2 KT in Fig. 4.2. The scaled CASTLE general time data were self-consistent. The deviation of these data was of the order of 1 per cent or less. The scaled arrival time data varied from l to 3 per cent low as compared to the corresponding distances on the 2 kT curve. The JANGLE surface, with the exception of one point, 16 /and the IVY Mike data that existed in the observed region compare favorably with the CASTIE data.

4.2 THE VERTICAL DATA OF SHOT 2

In Section 3.3 the vertical data obtained on Shot 2 were presented. Throughout this discussion the pressure-distance data obtained in the region extending from 10,000 to $15,000 \mathrm{ft}$ will be referred to as the low-altitude data. Those data obtained in the 265,000 to $335,000 \mathrm{ft}$ region will be referred to as the high-altitude data.

4.2.1 The Low-Altitude Data

The curves to which the experimental data were compared were obtained through the theory described in references (2) and (3).

In order to derive the theoretical vertical pressure-distance curve it was necessary to determine the radius of a TNT charge equivalent to Shot 2. Both the water surface data (Table 3.8) and preliminary data of Project l.2a were used. The determination was made through the use of the modified Ledsham-Pike TNT data* given in reference (3). These data are expressed in terms of the dimensionless parameters:

$$
Q=\frac{P_{s}}{P_{0}}, \quad X=\log \frac{r}{a}
$$

Where:

$$
\begin{aligned}
& \text { Ps }=\text { the peak shock overpressure, psi } \\
& P_{0}=\text { the standard atmospheric pressure, psi } \\
& \mathrm{r}=\text { distance from ground zero in the honogeneous } \\
& \text { medium along the surface (} \mathrm{ft} \text {) } \\
& \mathrm{a}=\text { radius of an equivalent charge of TNT (} \mathrm{ft} \text {) }
\end{aligned}
$$

The value of Q was easily determined from the experimental data and the corresponding X was found by interpolating in Table 1 of reference (3). The distance r was known and therefore a, the charge radius, could be determined.

[^15]

Fig. 4.2 Surface Arrival Time Data Scaled to $1 K T$ at Sea Level

The average charge radius obtained over the region encompassed by the water surface data (106 psi to 30 psi) was found to be $349 \mathrm{ft}+$ 3 ft ; the average radius over the Sandia Corp. data (2.9 psi to 1.2 psi) was found to be $404 \mathrm{ft}+11 \mathrm{ft}$. The arithmetic mean of these radii was $376 \mathrm{ft} \pm 26 \mathrm{ft}$. A similar computation was made for the Mike data* 17 (20 psi to 1.3 psi) and the average radius was found to be $387 \mathrm{ft}+17 \mathrm{ft}$, which falls within boundaries established by the Shot 2 data and is in effective agreement with the Shot 2 average curve. (The resuiting surface curves based on the theory are shown in Fig. 4.3.) Utilizing these equivalent charge radii, vertical pressure-distance curves were found after the methods of reference (3). These curves together with the vertical data of Shot 2 are shown in Fig. 4.4. The uncertainty of the vertical experimental data was large,** but it should be noted that the predicted values fall within the stipulated experimental accuracy. Another result of the large experimental uncertainty was the inability to determine whether the vertical peak shock overpressures were greater or less than the surface pressures at corresponding distances.

In addition these data cannot be compared to the pressure data obtained aloft on IVY Mike, 18/ which was a comparable shot. The CASTLE data were obtained vertically above ground zero whereas the IVY Mike measurements were made along shock radii.

4.2.2 The High-Altitude Data

On Shot 2, two wave fronts were observed between the altitudes ,000 and $\sim 335,000 \mathrm{ft}$.
The first wave front of the two visible wave fronts (section 3.3.1, Figs. 3.9 and 3.10) was in all probability the shock wave. This contention was checked by approximating the arrival time of the shock wave at the lower level of the data. The arrival time of the shock at $100,000 \mathrm{ft}$ was determined through the low-altitude data and theory. 2,3, Beyond this distance, the shock velocity was assumed sonic igd sound velocities obtained from the NACA standard atmospheric data $\frac{19}{}$ were used. It was found that the observed arrival time and the approximated value agreed within 5 per cent, which was less than the spatial uncertainty.

It will be noticed that the slope of the arrival time curve (Fig. 3.9) of the first wave increases slightly with altitude, which wouid indicate that the velocity was increasing with distance. (The velocity of sound increases with altitude $20,21 /$ in this region but not as much as the curve indicates.) However, in light of the large spatial uncertainties this was ignored and the data were fitted by a straight line. From this, the average velocity was found to be 1470 f 't $/ \mathrm{sec}$. Measurements made by EC\&G in the same region indicated an aver-

[^16]

Fig. 4.3 Theoretical Surface Curves Derived from Shot 2 and IVY
Mike Data

$\begin{aligned} \text { Fig. 4. } 4 & \text { Vertical Pressure-Distance Data of Shot } 2 \text { Shown with } \\ & \text { Curves Fredicted from }\end{aligned}$ Curves Predicted from NOL Theory

TABLE L.]. - Scaled Pressure-Distance Data

$\begin{aligned} & \text { Distance } \\ & \text { from } \overline{\mathrm{GZ}} \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$	Shot	t	Shot 2						Shot 6	
	Water Surface									
	Distance	Pressure	Distance	Pressure	Water Surface		Water Surface		Water	Surface
	$\begin{gathered} (f t) \\ S_{d}=0.0405 \end{gathered}$	(psi)	(ft)	(psi)	$(f t)$	$\left\lvert\, \begin{gathered} \text { Pressure } \\ \text { (psi) } \end{gathered}\right.$	Distance $(f t)$	$\left\lvert\, \begin{gathered} \text { Fressure } \\ (\mathrm{psi}) \end{gathered}\right.$	Distance (ft)	
			$\mathrm{S}_{\mathrm{d}}=0.0450$		$\mathrm{S}_{\mathrm{d}}=0.0450$	$s_{p}=1.001$	$\mathrm{S}_{\mathrm{d}}=0.0522$	$\mathrm{s}_{\mathrm{p}}=1.006$	$\begin{gathered} (f t) \\ S_{\mathrm{d}}=0.0836 \end{gathered}$	$\begin{gathered} (p s i) \\ S_{p}=1.007 \end{gathered}$
3500	$\begin{aligned} & 303 \\ & 324 \\ & 364 \\ & 405 \end{aligned}$	$\begin{aligned} & 141 \\ & 125 \\ & 95.3 \\ & 73.6 \end{aligned}$	$\begin{aligned} & 225 \\ & 247 \\ & 270 \\ & 292 \\ & 315 \\ & 337 \end{aligned}$	$\begin{aligned} & 304 \\ & 245 \\ & 201 \\ & 170 \\ & 11 / 4 \\ & 125 \end{aligned}$	$\begin{aligned} & 337 \\ & 360 \\ & 405 \\ & 450 \\ & 494 \end{aligned}$	$\begin{gathered} 106 \\ 91.1 \\ 65.5 \\ 48.8 \\ 38.3 \end{gathered}$			$\begin{aligned} & 752 \\ & 836 \\ & 920 \end{aligned}$	18.414.712.1
4000							183	497		
4500							209	342		
5000							235	252		
5500							261	189		
6000							287	147		
6500							313	118		
7000							339	94.7		
7500							365	79.9		
8000							391	68.6		
9000							417	59.0		
10000							470	44.9		
11000							522	35.4		
12000							574	28.5		
13000							626	23.6		
14000							678	19.2		
							730	16.5		

TABLE 4.2 - Composite Free Air Arrival Tine Data For 1 KT

Scaled Distance $(f t)$	Scaled Tine (sec)
125	0.0063
150	0.0098
175	0.0142
200	0.0194
225	0.0253
250	0.0321
275	0.0400
300	0.0486
325	0.0579
350	0.0679
375	0.0786
400	0.1138
450	0.1398
500	0.1676
550	0.22769
600	0.2595
650	0.2925
700	0.3264
750	0.3613
800	0.3970
850	0.4333
9.00	
950	
1000	

age velocity of $1180 \mathrm{ft} / \mathrm{sec}$.* The difference between the two velocities was large but not unreasonable (refer to 3.3.1). At these altitudes, it would seem reasonable to belleve that the shock velocity would be very nearly sonic. As compared to the sonic velocities shown in reference (20) and those computed from the data given in (21), the EG\&G data would seem the more reasonable, although both appear high. (Using these velocities to approximate** over-pressures

[^17]TABLE 4.3 - Arrival Time Data Scaled to 1 KT at Sea Level

leads to pressures * that are of the same order of magnitude as the ambient atmospheric pressure.)

The origin of the second wave is unknown but there is evidence which indicates that it was an acoustic wave. It was not possible to make usable measurements of the second wave on the copy of film 24,562 . However, EG\&G was able to make measurements on the original that led to an average velocity of $1010 \mathrm{ft} / \mathrm{sec}$, which was reasonable as compared to sonic velocity over this region. Further arrival time measurements ${ }^{*} *$ made of Elmer Island showed the existence of an acoustic wave that arrived approximately 100 sec after the first wave, which could well have been the second wave, for if it were assumed that both waves were moving at very nearly sonic velocity (the excessive velocity of the first wave aloft can be accounted for by the large spatial uncertainties) then the spacing of the two waves in terms of time, as estimated from the film copy, was of the same order of magnitude.

4.3 SURFACE EFFECTS

On Shots 4 and 5 a number of anomalies in the wave forms were described in the preliminary version of reference (22) and it was found that the dynamic and stagnation pressures were higher than those celculated from the overpressures. These anomalies were believed to have been caused by water droplets and/or dust particles carried by the shock weve. The observations made in the films of Shots 4 and 5 indicated that the dense water cloud was present in this region which would account for the presence of water droplets.

The generation of this water cloud is believed to be the result of the interaction of the shock and the rough water surface.

The appearance of this effect, which apparently contributed to the anomalous results obtained on Shots 4 and 5, indicates that water does not constitute as ideal a surface as was presupposed.

[^18]
CONCLUSIONS AND RECOMMENDATIONS

5.1 INSTRUMENTATION

5.1.1 Photography 1.1 a and 1.1 b

The photographic instrumentation for Projects $1.1 a$ and $1.1 b$ was generally successful; however, the analysis would have been simplified if fiducial markers had been used. It would also have been useful to have cameras equipped with lenses of sufficiently long focal lengths at different stations to detect possible asymmetric shock growth along the surface.

5.1.2 Photography 1.1d

The photography of Project l.ld was unsuccessful. The conditions under which these films were obtained were generally poor: viz., the extreme range at which the aircraft had to operate and the obscuration of the field of view by clouds. However, it is felt that if aerial photography is to be used again for studying blast waves from weapons of great yields, wide latitude film should be used.

5.1.3 Smoke Rockets

The smoke rockets proved to be of great value on Shot 4. There is, however, one change that should be made if similar tests of large weapons are to be made in the future. The rocket battery should be moved, keeping the same plane of fire, to a greater distance from $\overline{G Z}$ in order to increase the coverage.*

[^19]
5.2 EXPERIMENTAL RESULTS

5.2.1 The Surface Pressure-Distance Data

No asymmetry greater than 200 ft was detected in the growth of ck waves along the surface. the shock waves along the surface.
The surface pressure-distance data obtained have a maximum uncertainty of 10 per cent with the exception of the land data of Shot 2.

The use of the cube root law for scaling blast from yields ranging from 1.7 to 15 MT in the 10 to 500 psi region gave rise to results that were self-consistent and well within the experimental accuracy of the data. As compared to the free air composite curves scaled to 2 KT the reduced data were generally 10 to 15 per cent low in this pressure region, but the uncertainty of both the composite data (5 per cent) and the experimental data (10 per cent) should be considered.

5.2.2 The Vertical Data of Shot 2

The vertical data of Shot 2 were not of sufficient accuracy to be used to confirm or deny the NOL theory of the effect of a nonhomogeneous atmosphere on blast. The pressures predicted through the theory fell within the stipulated experimental accuracy of the data. Inasmuch as the data did not confirm or deny the theory further investigation should be made.

The first of the two wave fronts observed at very great altitudes ($\sim 265,000$ to $\sim 335,000 \mathrm{ft}$) was probably the shock wave. The origin of the second wave is unknown, but it was presumed to be an acoustic wave. A further theoretical investigation of the second wave should be made.

5.2.3 Surface Effects

No precursors were observed in the films.
A dense cloud of water, believed to bave been the result of the interaction of the shock and the rough water surface, was developed immediately behind the shock. This effect seemed to confirm the existence of water droplets which was postulated by Sandia Corp. as one of the causes for the anomalies observed in the wave forms and dynamic pressures.

It would appear that a water surface does not constitute as ideal a surface as was presupposed.

APPENDIX A

DETERMINATION OF THE HORIZONTAL AIMING ANGLESS

A.l.l SHOT 2

The horizontal aiming angles of the cameras were not as specified in the photographic instrumentation plan (Table 2.3). The horizcntal aiming angle of the primary camera was found as follows: The line midway between the sides of the frame or midway between the inner edges of the two rows of sprocket holes (either basis could be used) was drawn on the drawing and was used as a vertical centerline of the frame. The optical axis was assumed to pass through the center of this line. Ground zero was identified on the drawing, and the distance from $\overline{\mathrm{GZ}}$ to the vertical centerline on the drawing was measured. Dividing this distance by the magnification of the Recordak gave the corresponding distance on the film (GZ. P_{1} ' in the plan view of Fig. A.1).

The horizontal aiming angle is then given by

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{\left.\overline{\mathrm{GZ}^{\prime} \mathrm{P}_{1}}{ }^{\prime}\right)}{\mathrm{JP}_{1}^{\prime}}\right) \\
& =\tan ^{-1}\left[\frac{\left.{\overline{\mathrm{GZ}}{ }^{\prime} \mathrm{P}_{1}^{\prime}}_{\left(\frac{\mathrm{JM}}{1}\right.}^{\cos \theta_{1}}\right)}{}\right]
\end{aligned}
$$

where $\mathrm{JM}_{1}{ }^{\prime}=\mathrm{f}_{1}$
$=$ the (known) effective focal length of the
primary camera
and $\theta_{1} \quad=$ the (known) vertical aiming angle of the primary camera
In order to find the horizontal aiming angles of the two subsequent cameras, the point at which a bolt of lightning, visible in all three films, interesected the horizon was used as a fiducial marker.

The distance from the point where the marker appeared in the primary record to the vertical centerline was measured on the

A. 1 Plan and Elevation Views of the Geometry of the Optical Axis of the Primary
Camera

A. 2 Use of a Fiducial Marker of Unknown Location
drawing. Dividing this distance by the magnification of the Recordak gave the corresponding distance on the film ($F_{1}{ }^{\prime} P_{1}$ ' in Fig. A.2).
Then $\Varangle F_{1} \cdot J P_{1}$. $=\tan ^{-1}\left(F_{1} \cdot P_{1}^{\prime}\right)$ Then $\Varangle F_{1}{ }^{\prime} \mathrm{JP}_{1}^{\prime}=\tan ^{-1}\left(\frac{\mathrm{~F}_{1}^{\prime} \mathrm{P}_{1}^{\prime} \prime^{\prime}}{\mathrm{JP}_{1}^{\prime}}\right) \quad\left(\mathrm{F}_{1}^{\prime P_{1}}\right.$ in Fig. A.2).

$$
=\tan ^{-1}\left[\frac{F_{1}^{\prime} P_{1}^{\prime}}{\left(\frac{\mathrm{JM}_{1}^{\prime}}{\cos \theta_{1}}\right)}\right]
$$

The distance from the point where the marker appeared in the subsequent record to the vertical centerline was measured on the drawing. Dividing this distance by the magnification of the Recordak gave the corresponding distance on the film ($F_{n}^{\prime} P_{n}{ }^{\prime}$).

$$
\text { Then } \begin{aligned}
\otimes P_{n}^{\prime} J F_{n}^{\prime} & =\tan ^{-1}\left(\frac{F_{n}^{\prime} P_{n}^{\prime}}{J P_{n}^{\prime}}\right) \\
& =\tan ^{-1}\left[\frac{F_{n} P_{n}^{\prime}}{\left(\frac{J M_{n}^{\prime}}{\cos \theta_{n}}\right)}\right]
\end{aligned}
$$

and $\phi_{n}=\phi_{1}+\Varangle F_{1}{ }^{\prime} J P_{1}{ }^{\prime}+\Varangle P_{n}{ }^{\prime} J F_{n}{ }^{\prime}$

A.1. 2 SHOT 4

On Shot 4 there was nothing that could be used as a fiducial marker, but the magnification factors of the three films used were known to be very nearly equal.

The horizontal aiming angles were corrected as follows:
The aiming angle of the primary camera was determined in the manner described in the previous section.

Tracings of the fireball from successive frames of the primary record were made on a single sheet of paper. The tracing line and the horizon coincided with those of the previous frames. The portions of the fireball visible in the subsequent record were then projected (at the same magnification) upon the series of tracings obtained from the primary record. The projection of any given frame of the subsequent record was aligned vertically with the tracing (the horizons were made to coincide). Horizontal alignment was attained by moving the projection along the horizon until it appeared to be in the proper position with respect to the tracings. Deformations in the fireball and rocket* trails were used as guides. Once the best position was found, the visible section of the fireball was traced and the position of the left reference ** of the subsequent film vas marked on the primary tracing. This procedure was carried out through the entire region of overlap between the primary record and the subsequent record in question. The position of the left reference was then approximately known with respect to $\overline{\mathrm{GZ}}$ as established in the tracings of the primary record and the approximate (Refer to Fig. A.2.)

$$
\phi_{\mathrm{n}}=\tan ^{-1}\left[\left(\frac{D_{\mathrm{n}}}{P_{\mathrm{n}}}\right) \cos \theta_{\mathrm{n}}\right]
$$

where D is the distance from $\overline{G Z}$, as established in the drawings from the primary data, to the midpoint of the baseline of the subsequent plane of measurement, i.e., $D_{n}=\overline{G Z} \cdot P_{n} / m_{R}$
m_{R} is the magnification of the Recordak used in making the tracings With primary and the subsequent records. was measured frame by framproximated, the growth of the shock front plotted arrival time data obtained corresponding times were read. The time int primary record and frames was noted and compared to the accurately between successive of the record in question. The approximated adjusted until their times per frame agreed aiming angle was then adusted until their times per frame agreed.

The rocket trails were not sufficiently well defined in the primary record to be used as a fiducial marker. ** The left reference was found through the sprocket holes on the fixed with respect frame. The position of the sprocket holes is always reference is known on any frame center. Thus if the position of the known. The variation of the sprame, the midpoint of the frame is frame center is less than 1 per

APPENDIX B
METEOROLOGICAL DATA ALOFT FOR SHOT 2

Page 98 , deleted

[^0]: * Films obtained for Project 13.2, which were used to extend the coverage of the Project 1.1 films, were also dependent upon this effect.
 ** The magnification factor is the ratio of the perpendicular distance from the camera to the plane of measurement to the focal length of the optical system. It may also be expressed as the ratio of a given distance in the plane of measurement to the same distance as it is reproduced in the focal plane of the lens.
 *** The Project 13.2 films had magnification factors considerably larger than the stipulated $300 \mathrm{ft} / \mathrm{mn}$ (refer to Table 2.3). The resulting distance uncertainties were very large on these films compared to those of the Project l.l films. See Section 3.9.2.

[^1]: * The plane of measurement is defined as that plane which is perpendicular to the principal optical axis and includes the origin of the event. The baseline of this plane lies on the surface. Consequently ground zero lies on the baseline. ** Shot 5 data from the two usable films which were obtained from different camera stations showed different rates of growth along the surface, but this could be accounted for by film anomalies. Refer to Section 3.6.
 *** Shots 2 and 4. Films were not available to check Shot 6 .

[^2]: On Shot 2 the discrepancy was of the order of 350 feet; on Shot 4 the discrepancy for film 24181 was $\sim 2,800$ feet and for film 24182 it was $\sim 4,800$ feet.
 ** The overlapping cameras.
 *** The primary camera was that camera which was most nearly
 (horizontally) aimed at ground zero. The data obtained from the subsequent cameras were referred to this camera for correlation. ${ }^{*} * * *$ The principal optical axis of any lens was assumed to intersect the vertical centerline of the frame. Later calibration of lenses and cameras bore out this assumption. On Shot 2 it was found that the divergence was less than 1 minute of arc. On Shot 4 the maximum divergence was found to be 5 minutes. On Shot 6 calibration for the carcera used to obtain film 24478 was not available. Corrections were made for the known divergences.
 $* * * * *$ On Shots 2 and 6 the surface was below the horizon and the horizon was used as the baseline. As a result these measurements were actually made 10 ft and 50 ft , respectively, above the real surpace. ****** Camera towers are not shown. The effect of these towers on the ranges and aiming angles was negligible.

[^3]: * The primary records of Shots 1,2 , and 4 were used in conjunction with other films by EG\&G in the fireball analysis and the time of each frame was established in terms of absolute time.

[^4]: * In regions of very high pressures and temperatures the RankineHugoniot relation as written is not exact because the equation of state upon which it is based no longer applies. The ratio of specific heats, γ, for air becomes meaningless. To avoid introducing errors and to simplify the task of calculation, recourse was made to the Hirschfelder and Curtiss Tables (ll) which give ($\mathrm{P}_{\mathbf{s}}+\mathrm{p}_{\mathrm{o}}$)/P as a function of $\mathrm{U} / \mathrm{C}_{\mathrm{O}}$ with all the necessary corrections accounted for. ** Atmospheric pressure was assumed to be 14.7 psi ; temperature was assumed to be $20^{\circ} \mathrm{C}$.

[^5]: * With the exception of the Shot 3 film, all the films obtained for Project l.ld were badly overexposed in the first 30 sec after zero time. High speed film was used rather than the high latitude film reguested.

[^6]: * The spatial uncextainties were of the order of 3 to 5 per cent.

[^7]: There were several 13.2 Pilms available for this shot. Film
 24,054 was found to be best suited for shock measurements.
 ** Ground zero was 10 ft below the horizon. As a result all horizontal measurements were effectively made 10 ft above the surface.

[^8]: * All surface meteorological data are found in Table 1.1.

[^9]: The azimuth of the pipeline from ground zero was $65^{\circ} 52^{\prime} 03^{\prime \prime}$ and the azimuth of the plane of measurement of $\mathrm{film} 24,079$ was 640 40^{\prime} 41". Corrections were made for the small angular difference.

[^10]: Various views of the jet were available (from Stations 1302.03, 1302.02, and 1300.) Accurate measurements of the jet were possible on only the 1.1 film taken from 1302.03 but the appearance of the jet in the 13.2 films taken from the other stations indicated this form.

[^11]: This effect was visible to the unaided eye from Elmer Island, about 200 miles away.

[^12]: The vertical peak shock overpressure-distance data must be treated with caution. The uncertainty is quite large (~ 20 per cent). (See Section 3.9.5). The meteorological data used in the calculation may be found in Appendix B.

[^13]: The Sandia Corporation data shown with this curve were obtained from the preliminary version of reference (14).

[^14]: * The uncertainty introduced amounts to from 5 to 7 per cent of the rrennification factor (see Table 2.3).

 Filus 24,079, 24,575, and 24,180.

[^15]: These data are based upon an ambient pressure of 14.7 psi and an ambient temperature of 288 K . The effect of the small difference between the standard temperature and the ambient temperature for Shot 2 could be neglected for the purposes of this comparison.

[^16]: * The yield of Mike was given as 10.5 MT ; that of Shot 2 was given as ll MT. cent The uncertainty ranges from 20 per cent at $10,000 \mathrm{ft}$ to 15 per cent at $15,000 \mathrm{ft}$. Refer to section 3.9.5.

[^17]: The velocities obtained by EG\&G have not yet been published. These data were obtained from Lewis Fussell of EG\&G.
 ** Up to roughly 80 km the composition of the air is virtually unchanged, but beyond this point the composition does change; consequently beyond 80 km the Rankine-Hugoniot relation for pressure can serve as an approximation only. Data from (20) and (21) were used in the approximation.

[^18]: The approximate average overpressure at $265,000 \mathrm{ft}$ was found to be ($1.4 \pm 0,6$) $10^{-4} \mathrm{psi}$; at $330,000 \mathrm{ft}$ the average overpressure was $(6+4) \overline{10} 0^{-6} \mathrm{psi}$ (ambient pressures were $\sim 7.25 \times 10^{-4} \mathrm{psi}$ and $\sim 72.5 \times$ $10^{-6} \mathrm{psi}$ respectively).
 ** The following observations were made on Fred Island, $\sim 1,041,000$

 1. +17 min 55 sec Two sharp reports, close together but
 resolvable.
 2. $+19 \min 35 \mathrm{sec}$ A single report of slightly greater
 duration.
[^19]: No artificial background is needed in the early shock stages.

